
How do we run Kafka 100% on the
object storage?
Let’s see how AutoMQ makes this dream come true.

Vu Trinh · Following

Published in The Deep Hub · 13 min read · Aug 27, 2024

252 3

Image created by the author.

This was originally published at
https://vutr.substack.com.

Intro

This week, I’m excited to explore AutoMQ, a cloud-native, Kafka-compatible
streaming system developed by former Alibaba engineers. In this article,
we’ll dive into one of AutoMQ’s standout technical features: running Kafka
entirely on object storage.

Overview

Before we move on, let’s revisit the Kafka design. The message system uses
the OS filesystem for data storage and leverages the kernel page cache
mechanism. Rather than trying to keep as much data in memory and flush it
to the filesystem, the OS transfers all data to the page cache before flushing
it to the disk. All the messages’ write and read operations must go through
the page cache.

Modern OS systems usually borrow unused memory (RAM) portions for page
cache. The frequently used disk data is populated to this cache, avoiding touching
the disk directly too often, which lead to performance improvement

Apache Kakfa tightly-couped architecture. Image created by the author.

This design tightly couples computing and storage, meaning adding more
machines is the only way to scale storage. If you need more disk space, you
must add more CPU and RAM, which can lead to wasted resources.

Apache Kafka tiered storage. Image created by the author.

After experiencing elasticity and resource utilization issues due to Kafka’s
tight compute-storage design, Uber proposed Kafka Tiered Storage (KIP-405)
to avoid the tight coupling design of Kafka. The main idea is that a broker
will have two-tiered storage: local and remote. The first is the broker’s local
disk, which receives the latest data, while the latter uses storage like
HDFS/S3/GCS to persist historical data.

The broker isn’t 100% stateless in the Kafka-tiered architecture. Image created by the author.

Although offloading historical data to remote storage can help Kafka broker
computing and storage layers depend less on each other, the broker is not
100% stateless. The engineers at AutoMQ wondered, “Is there a way to store
all of Kafka’s data in object storage while still maintaining high performance
as if it were on a local disk?”

AutoMQ Storage architecture

At the moment, AutoMQ can run on major cloud providers like AWS, GCS, and
Azure, but I will use technology from AWS to describe its architecture to align with
what I’ve learned from their blogs and documentation.

The goal of AutoMQ is simple: to enhance Kafka’s efficiency and elasticity by
enabling it to write all messages to object storage without sacrificing
performance.

They achieve this by reusing Apache Kafka code for the computation and
protocol while introducing the shared storage architecture to replace the
Kafka broker’s local disk. Unlike the tiered storage approach, which
maintains local and remote storage, AutoMQ wants to make the system
completely stateless.

From the 10,000-foot view, the AutoMQ broker writes messages into the
memory cache. Before asynchronously writing this message into the object
storage, the broker has to write the data into the WAL storage first to ensure
the data durability.

AutoMQ architecture overview. Image created by the author.

The following sub-sections go into the details of the AutoMQ storage layer.

Cache

Type of cache in AutoMQ. Image created by the author.

AutoMQ uses an off-heap cache memory layer to handle all message reads
and writes, guaranteeing real-time performance. It manages two distinct
caches for different needs: the log cache handles writes and hot reads (those
requiring the most recent data), and the system uses the block cache for cold
reads (those accessing historical data).

If data isn’t available in the log cache, it will be read from the block cache
instead. The block cache improves the chances of hitting memory even for
historical reads using techniques like prefetching and batch reading, which
helps maintain performance during cold read operations.

Prefetching is a technique that loads expected to be needed data into memory
ahead of time, so it’s ready when needed, reducing wait times. Batch reading is a
technique that allows multiple pieces of data to be read in a single operation. This
reduces the number of read requests and speeds up data retrieval.

Each cache has a different data eviction policy. The Log Cache has a default
max size (which is configurable). If it reaches the limit, the cache will evict
data with a first-in-first-out (FIRO) policy to ensure its availability for new
data. With the remaining cache type, AutoMQ uses the Least Recently Used
(LRU) strategy for the Block Cache to evict the block data.

The memory cache layer offers the lowest latency for read and write
operations; however, it is capped by the amount of machine memory and is
unreliable. If the broker machine crashes, the data in the cache will be gone.
That’s why AutoMQ needs a way to make the data transfer more reliable.

Write Ahead Log

Data is written from the log cache to raw EBS devices using Direct IO.

AWS Elastic Block Storage. Source

An EBS is a durable, block-level storage device that can be attached to EC2
instances. Amazon EBS offers various volume types, from SSD to HDD, allowing
users to choose based on their needs. The EBS Multi-Attach feature lets you attach
an EBS volume to multiple EC2 instances. We’ll revisit the Multi-Attach feature
when exploring how AutoMQ recover from failure behind the scenes.

The EBS storage acts as the Write Ahead Log (WAL), an append-only disk
structure for crash and transaction recovery. Databases that use B-Trees for
storage management usually include this data structure for recovery; every
modification must go through the WAL before being applied to the data.
When the machine returns from a crash, it can read the WAL to recover to
the previous state.

WAL in B-Tree Implementation Database. Image created by the author.

Similarly, AutoMQ treats the EBS device as the WAL for AutoMQ. The brokers
must ensure the message is already in the WAL before writing to S3; when
the broker receives the message, it writes to the memory cache and returns
an “I got your message” response only when it persists in the EBS. AutoMQ
uses the data in EBS for recovery in case of broker failure. We will get back to
the recovery process in the upcoming section.

WAL in AutoMQ. Image created by the author.

It’s essential to consider the high cost of EBS, especially with IOPS-optimized
SSDs type. Since the EBS device in AutoMQ serves mainly as a WAL to ensure
message durability, the system only needs a small amount of EBS volume.
The AutoMQ default WAL size is set to 10GB.

Object Storage

The object storage stores all AutoMQ data. Users can use services like AWS S3
or Google GCS for this layer. Cloud object service is famous for its extreme
durability, scalability, and cost-efficiency. The broker writes the data to the
object storage from the log cache asynchronously.

AutoMQ’s data files in the object storage have the following components:
DataBlock, IndexBlock, and Footer, which store the actual data, index, and
file metadata, respectively.

Data file in object storage. Image created by the author.

DataBlocks contain the actual data.

The IndexBlock is a fixed 36-byte block made up of DataBlockIndex
items. The number of items is associated with the number of DataBlocks
in the file. Information within each DataIndexBlock helps to position the
DataBlock location.

The Footer is a fixed 48-byte block that contains the location and size of
the IndexBlock, enabling quick access to index data.

The following sections will dive into the read/write operations of AutoMQ;
along the way, we will understand more about how the system works under
the hood.

The write

From the user’s perspective, the writing process in AutoMQ is similar to
Apache Kafka. It starts with creating a record that includes the message’s
value and the destination topic. Then, the message is serialized and sent
over the network in batches.

The critical difference lies in how the broker handles message persistence.

In Kafka, the broker writes the message to the page cache and then flushes it
to the local disk. They don’t implement any memory cache and leave all the
work to the OS system.

With AutoMQ, things got very different. Let’s take a look closer at the
message-writing process:

The overall message writing process of AutoMQ. Image created by the author.

The producer sends the message to the broker and waits for the
response.

The broker places the received message into the log cache, an off-heap
memory cache.

Off-heap memory in Java is managed outside the Java heap. Unlike heap memory,
which the JVM handles and garbage collects, off-heap memory is not
automatically managed. Developers must manually allocate and deallocate off-
heap memory, which can be more complex and prone to memory leaks if not
handled properly, since the JVM does not clean up off-heap memory
automatically.

The message was then written to the WAL (the EBS) device using Direct
I/O. Once the message is successfully written to the EBS, the broker sends
a successful response back to the producer. (I will explain this process in
the next section.)

Direct I/O is a method of bypassing the operating system’s file system cache by
directly reading from or writing to disk, which can reduce latency and improve
performance for large data transfers. Implementing Direct I/O often requires more
complex application logic, as developers must manage data alignment, buffer
allocation, and other low-level details

The message in the log cache is asynchronously written to the object
storage after landing in the WAL.

In the following sub-section, we will go into the details of the two processes,
cache-WAL and cache-object-storage.

The journey from the cache to the WAL

The message is written from the log cache to the WAL using the
SlidingWindow abstraction, which allocates the writing position for each
record and manages the writing process. The SlidingWindow has several
positions:

Sliding Windows Position. Source

Start Offset: This offset marks the beginning of the sliding window; the
system already writes records before this offset.

Next Offset: The next unwritten position; new records start here. Data
between the Start and Next Offsets has not yet been written entirely.

Max Offset: This is the end of the sliding window; when the Next Offset
reaches this point, it will try to expand the window.

To better understand, let’s check some new data structures from AutoMQ to
facilitate the write-to-EBS process:

Blocks Data Structure. Source

block: The smallest IO unit, containing one or more records, aligned to 4
KiB when written to disk.

writingBlocks: A collection of blocks is currently being written; AutoMQ
removes blocks once done writing them to disk.

pendingBlocks: Blocks waiting to be written; new blocks go here when
the IO thread pool is complete, moving to writingBlocks when space is

Get unlimited access to the best of Medium for less than $1/week. Become a member

https://medium.com/@vutrinh274?source=post_page-----521c6fec6341--------------------------------
https://medium.com/thedeephub?source=post_page-----521c6fec6341--------------------------------
https://medium.com/@vutrinh274?source=post_page-----521c6fec6341--------------------------------
https://medium.com/thedeephub?source=post_page-----521c6fec6341--------------------------------
https://medium.com/plans?dimension=post_audio_button&postId=521c6fec6341&source=upgrade_membership---post_audio_button----------------------------------
https://vutr.substack.com/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://en.wikipedia.org/wiki/Prefetching
https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://en.wikipedia.org/wiki/Write-ahead_logging
https://www.automq.com/blog/principle-analysis-how-automq-implements-high-performance-wal-based-on-raw-devices
https://www.automq.com/blog/principle-analysis-how-automq-implements-high-performance-wal-based-on-raw-devices
https://medium.com/plans?source=upgrade_membership---post_top_nav_upsell----------------------------------

available.

currentBlock: The latest arrived log from the cache. Records that need to
be written are placed in this block. New records are also allocated logical
offsets here. When the currentBlock is full, all blocks are placed in
pending blocks. At this time, the system will create a new current block.

After preparing all the prerequisite information, we will learn the process of
data writing into EBS:

The message’s journey from the cache to the WAL. Image created by the author.

The process begins with an append request, passing in a record.

The record is added to the currentBlock, assigned an offset, and
asynchronously returned to the caller.

If the currentBlock reaches a specific size or time limit, it moves all the
blocks to the pendingBlocks. AutoMQ will create a new currentBlock.

If there are fewer writingBlocks than the IO thread pool size, a block
from pendingBlocks is moved to writingBlocks for writing.

Once a block is written to disk, it’s removed from writingBlocks; the
system restarts the Start Offset of the sliding window. One marks the
append request as completed.

The journey from the cache to the object storage

The message’s journey from the cache to the object storage. Image created by the author.

When enough data accumulates in the log cache, AutoMQ triggers an upload
to object storage. The data in the LogCache is sorted by streamId and
startOffset. AutoMQ then writes the data from the cache to object storage in
batches, with each batch uploaded in the same order.

As mentioned earlier, data files in object storage include DataBlock,
IndexBlock, and the Footer.

After AutoMQ finishes writing the DataBlock, it constructs an IndexBlock
using the information from the earlier writes. Since the position of each
DataBlock within the object is already known, this data is used to create a
DataBlockIndex for each DataBlock. The number of DataBlockIndexes in the
IndexBlock corresponds to the number of DataBlocks.

Finally, the Footer metadata block records information related to the
IndexBlock’s data location.

The read

AutoMQ Consumers start the consumption process just like with Apache
Kafka. They issue an asynchronous pull request with the desired offset
position.

After receiving the request, the broker searches for the message and returns
it to the consumers. The consumers prepare the following request with the
next offset position, calculated by the current offset position and its length.

next_offset = current_offset + current_message_length

Things got different with the physical data reading path.

AutoMQ tries to serve as much data reading as possible from memory.
Initially, Kafka read the data from the page cache. If the message is not
there, the operating system will go to the disk and populate the required data
to the page cache to serve the request.

The overall message reading process of AutoMQ. Image created by the author.

Reading operations in AutoMQ follow the following paths: If the request
requires recently written data, it reads from the log cache. It’s important to
note that only messages already written to the WAL are available to fulfill the
request. If the data isn’t in the log cache, the operation checks the block
cache.

The block cache is filled by loading data from object storage. If the data is
still not found there, AutoMQ attempts to prefetch it. Prefetching allows the
system to load data that it anticipates will be needed soon. Since the
consumer reads messages sequentially from a specific position, prefetching
data can boost the cache hit ratio, improving read performance.

To speed up data lookup in object storage, the broker uses the file’s Footer to
find the position of the IndexBlock. The data in the IndexBlock is sorted by
(streamId, startOffset), allowing for quick identification of the correct
DataBlock through binary search.

Once the DataBlock is located, the broker can efficiently find the required
data by traversing all the record batches in the DataBlock.

The number of record batches in a DataBlock can affect the retrieval time
for a specific offset. To address this, all data from the same stream is divided
into 1MB segments during upload, ensuring that the number of record
batches in each DataBlock doesn’t slow down retrieval speed.

Recovery

As mentioned earlier, the role of the EBS storage is the AutoMQ’s Write
Ahead Log, which helps the process of writing messages from memory to
object storage more reliable. Let’s imagine a situation when an AutoMQ
cluster has two brokers, A and B, each with two associated EBS storage; let’s
see how AutoMQ achieves reliable message transfer:

How does AutoMQ achieve reliable message transfer? Image created by the author.

As mentioned, a message is considered successfully received once the
broker confirms it has landed in the WAL (EBS).

So, what if one of the brokers, says broker A, crashed? What happened
with that broker’s EBS storage device? How about the EBS data that had
not been written to object storage?

AutoMQ leverages the AWS EBS multi-attach feature to deal with this
situation. After broker A is down, EBS device A will be attached to broker
B. When broker B has two EBS volumes, it will know which one is
attached from the idle state by tags. Broker B will flush the data of EBS
storage A to S3 and then delete the volume. Moreover, when attaching the
orphan EBS volume to Broker B, AutoMQ leverages the NVME
reservation to prevent unexpected data writing to this volume. These
strategies significantly speed up the failover process.

The newly created broker will have new EBS storage.

Metadata management

We’ll wrap up this article by exploring how AutoMQ manages cluster metadata. It
reuses Kafka’s KRaft mechanism. I didn’t dive deeply into KRaft when writing the
Kafka series, so this is a great opportunity to learn more about this metadata
management model.

😊

AutoMQ leverages the latest metadata management architecture based on
Kafka’s Kraft mode.

Traditional Kafka relies on a separate ZooKeeper servers for cluster metadata
management, but KRaft eliminates ZooKeeper, simplifying Kafka and enhancing
resilience. In KRaft mode, Kafka uses an internal Raft-based controller quorum —
a group of brokers responsible for maintaining and ensuring metadata
consistency. The Raft consensus algorithm is used to elect a leader and replicate
metadata changes across the quorum. Each broker in KRaft mode keeps a local
copy of the metadata, while the Controller Quorum leader manages updates and
replicates them to all brokers, reducing operational complexity and potential
failure points.

Zookeeper Mode vs Kraft Mode. Source

AutoMQ also has a controller quorum that determines the controller leader.
The cluster metadata, which includes mapping between topic/partition and
data, mapping between partitions and brokers, etc., is stored in the leader.
Only the leader can modify this metadata; if a broker wants to change it, it
must communicate with the leader. The metadata is replicated to every
broker; any change in the metadata is propagated to every broker by the
controller.

Outro

In this article, we’ve explored how AutoMQ creatively leverages cloud
services to meet a critical goal: storing all Kafka messages in virtually
limitless object storage while maintaining Kafka’s original performance and
compatibility.

Thank you for reading this far. See you in the following article.

References

[1] AutoMQ Blog, How to implement high-performance WAL based on raw
devices? (2024)

[2] AutoMQ Blog, Challenges of Custom Cache Implementation in Netty-Based
Streaming Systems: Memory Fragmentation and OOM Issues (2024)

[3] AutoMQ Blog, Parsing the file storage format in AutoMQ object storage (2024)

[4] AutoMQ Github Repo

252 3

Written by Vu Trinh
19.99K Followers · Writer for The Deep Hub

🚀

 My newsletter vutr.substack.com

🚀

 Subscribe for weekly writing, mainly about
OLAP databases and other data engineering topics.

Following

More from Vu Trinh and The Deep Hub

See all from Vu Trinh See all from The Deep Hub

Recommended from Medium

Lists

General Coding Knowledge
20 stories · 1600 saves

Stories to Help You Grow as a
Software Developer
19 stories · 1382 saves

Leadership
59 stories · 443 saves

Good Product Thinking
12 stories · 699 saves

See more recommendations

Help Status About Careers Press Blog Privacy Terms Text to speech Teams

Automq Data Engineering Software Engineering Apache Kafka

Cloud Computing

in

How does Notion handle 200
billion data entities?
From PostgreSQL → Data Lake

Aug 6

in

The Overview Of Apache Spark
The infamous data processing engine

Sep 7

in

50+ Open-Source Options for
Running LLMs Locally
In my previous post, I discussed the benefits
of using locally hosted open weights LLMs,…
like data privacy and cost savings. By using…

Mar 12

in

I spent 4 hours learning Apache
Iceberg. Here’s what I found.
The table format’s overview and architecture

Aug 10

in

I used OpenAI’s o1 model to
develop a trading strategy. It is…
DESTROYING the marketIt literally took one try. I was shocked.

Sep 15

What’s Next for Apache Spark 4.0:
A Comprehensive Overview with…
Comparisons to Spark 3.xApache Spark has established itself as a
leading platform for big data processing, an…
the upcoming release of Spark 4.0 introduces
a range…Aug 25

in

Why do many people not
recommend using JWT?
My article is open to everyone; non-member
readers can click this link to read the full text.

Sep 16

This is BAD! MongoDB is Shutting
Down their Services?

😭

About

Sep 12

in

Where have all the Software
Development Jobs gone?
Here’s what you need to know.

Sep 12

in

Analysing Tech Layoffs: Which
Roles Were Hit Hardest?
In the aftermath of tech layoffs, it would
appear that engineering was hit hardest, but…
what about the others?

Sep 17

Vu Trinh Data Engineer Things

1.1K 13

Vu Trinh The Deep Hub

275 2

Vince Lam The Deep Hub

1K 9

Vu Trinh Data Engineer Things

601 5

Austin Starks DataDrivenInvestor

2.6K 83

Archana Goyal

309 2

Oliver Foster Stackademic

1.2K 47

Stevdza-San

590 30

Sarah Writtenhouse Women in Technology

1.4K 42

Bhavik Patel Product Coalition

782 16

Reading list

Create new list

Save

https://developer.confluent.io/learn/kraft/
https://developer.confluent.io/learn/kraft/
https://www.automq.com/blog/principle-analysis-how-automq-implements-high-performance-wal-based-on-raw-devices
https://www.automq.com/blog/netty-based-streaming-systems-memory-fragmentation-and-oom-issues#automq-cache-design
https://www.automq.com/blog/parsing-the-file-storage-format-in-automq-object-storage
https://github.com/AutoMQ/automq
https://medium.com/tag/automq?source=post_page-----521c6fec6341--------------------------------
https://medium.com/tag/data-engineering?source=post_page-----521c6fec6341--------------------------------
https://medium.com/tag/software-engineering?source=post_page-----521c6fec6341--------------------------------
https://medium.com/tag/apache-kafka?source=post_page-----521c6fec6341--------------------------------
https://medium.com/tag/cloud-computing?source=post_page-----521c6fec6341--------------------------------
https://medium.com/@vutrinh274?source=post_page-----521c6fec6341--------------------------------
https://medium.com/thedeephub?source=post_page-----521c6fec6341--------------------------------
https://medium.com/@vutrinh274?source=post_page-----521c6fec6341--------------------------------
https://medium.com/@vutrinh274/followers?source=post_page-----521c6fec6341--------------------------------
https://medium.com/thedeephub?source=post_page-----521c6fec6341--------------------------------
http://vutr.substack.com/
https://medium.com/@vutrinh274?source=post_page-----521c6fec6341--------------------------------
https://medium.com/thedeephub?source=post_page-----521c6fec6341--------------------------------
https://eddiebarth.medium.com/list/general-coding-knowledge-f2d429d4f0cd?source=read_next_recirc-----521c6fec6341--------------------------------
https://medium.com/@MediumStaff/list/stories-to-help-you-grow-as-a-software-developer-b1d913188c20?source=read_next_recirc-----521c6fec6341--------------------------------
https://eddiebarth.medium.com/list/leadership-0cc0d07e2706?source=read_next_recirc-----521c6fec6341--------------------------------
https://medium.com/@breanamjones/list/good-product-thinking-25dfb3a0bd21?source=read_next_recirc-----521c6fec6341--------------------------------
https://medium.com/?source=post_page-----521c6fec6341--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----521c6fec6341--------------------------------
https://medium.statuspage.io/?source=post_page-----521c6fec6341--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----521c6fec6341--------------------------------
https://medium.com/jobs-at-medium/work-at-medium-959d1a85284e?source=post_page-----521c6fec6341--------------------------------
https://medium.com/thedeephub/pressinquiries@medium.com?source=post_page-----521c6fec6341--------------------------------
https://blog.medium.com/?source=post_page-----521c6fec6341--------------------------------
https://policy.medium.com/medium-privacy-policy-f03bf92035c9?source=post_page-----521c6fec6341--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----521c6fec6341--------------------------------
https://speechify.com/medium?source=post_page-----521c6fec6341--------------------------------
https://medium.com/business?source=post_page-----521c6fec6341--------------------------------
https://medium.com/data-engineer-things/how-does-notion-handle-200-billion-data-entities-919b238c2846?source=author_recirc-----521c6fec6341----0---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/@vutrinh274?source=author_recirc-----521c6fec6341----0---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/thedeephub/the-overview-of-apache-spark-116f7b2c6dc1?source=author_recirc-----521c6fec6341----1---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/@vutrinh274?source=author_recirc-----521c6fec6341----1---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/thedeephub/50-open-source-options-for-running-llms-locally-db1ec6f5a54f?source=author_recirc-----521c6fec6341----2---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/@vince-lam?source=author_recirc-----521c6fec6341----2---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/data-engineer-things/i-spent-4-hours-learning-apache-iceberg-heres-what-i-found-9750b0d70d84?source=author_recirc-----521c6fec6341----3---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/@vutrinh274?source=author_recirc-----521c6fec6341----3---------------------df89041b_9411_4d67_9cbf_6819d2c2b727-------
https://medium.com/datadriveninvestor/i-used-openais-o1-model-to-develop-a-trading-strategy-it-is-destroying-the-market-576a6039e8fa?source=read_next_recirc-----521c6fec6341----0---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@austin-starks?source=read_next_recirc-----521c6fec6341----0---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@goyalarchana17/whats-next-for-apache-spark-4-0-a-comprehensive-overview-with-comparisons-to-spark-3-x-c2c1ba78aa5b?source=read_next_recirc-----521c6fec6341----1---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@goyalarchana17?source=read_next_recirc-----521c6fec6341----1---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/stackademic/why-do-many-people-not-recommend-using-jwt-9147b2c899f8?source=read_next_recirc-----521c6fec6341----0---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@haiou-a?source=read_next_recirc-----521c6fec6341----0---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@stevdza-san/this-is-bad-mongodb-is-shutting-down-their-services-c2c6048d667b?source=read_next_recirc-----521c6fec6341----1---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@stevdza-san?source=read_next_recirc-----521c6fec6341----1---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/womenintechnology/where-have-all-the-software-development-jobs-gone-4925e637587c?source=read_next_recirc-----521c6fec6341----2---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@sarahwrittenhouse?source=read_next_recirc-----521c6fec6341----2---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/managing-digital-products/analysing-tech-layoffs-c67d7de2d630?source=read_next_recirc-----521c6fec6341----3---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------
https://medium.com/@bhavpatel?source=read_next_recirc-----521c6fec6341----3---------------------b8cdd64a_c70e_41df_b5af_60cf8c4d3fea-------

