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This is an updated version of a post we originally published in 2020. You can read the original
version here.

The growth of the data infrastructure industry has continued unabated since we published a set

of reference architectures in late 2020. Nearly all key industry metrics hit record highs during the
past year, and new product categories appeared faster than most data teams could reasonably

keep track. Even the benchmark wars and billboard battles returned.

To help data teams stay on top of the changes happening in the industry, we’re publishing in this
post an updated set of data infrastructure architectures. They show the current best-in-class
stack across both analytic and operational systems, as gathered from numerous operators we
spoke with over the last year. Each architectural blueprint includes a summary of what's changed
since the prior version.

We'll also attempt to explain why these changes are taking place. We argue that core data
processing systems have remained relatively stable over the past year, while supporting tools
and applications have proliferated rapidly. We explore the hypothesis that platforms are
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beginning to emerge in the data ecosystem, and that this helps explain the particular patterns
WE'Ea $eeing indheravplation of the data stack.

To compile this work, we relied again on input from dozens of data experts, who are listed at the
end of this post. This simply wouldn’t exist without them, so thank you!

Updated reference architectures

Before we get too deep in the details, here are the latest architecture diagrams. These were
compiled with the help of leading data practitioners, based on what they run internally and what
they recommend for new deployments.

The first view shows a unified overview across all data infrastructure use cases:
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Notes: Excludes OLTP, log analysis, and SaaS analytics apps.
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The second view zooms in on machine learning, which is a complex and increasingly

independent tool chain:

Machine Learning Infrastructure (2.0)
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Machine Learninlngnfrastructure (2.0): Definitions
TABL CONTERTS
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In the rest of this post, we’ll comment on what’s changed since v1 of the data stack and explore
the underlying root causes.

Changelog
What hasn’t changed: Stability in the core

Despite the frenzy of data infrastructure activity over the past year, it's surprising to see —in
some ways — how little has changed.

In our first post, we drew a distinction between analytic systems that support data-driven
decision-making and operational systems that power data-driven products. We then mapped
these categories to three patterns, or blueprints, often implemented by leading data teams.

Analytic Systems Operational Systems
Make data-driven decisions Build data-powered products

L b\

Il l

Modern Business Intelligence

One of the key questions was whether these architectural patterns would converge. A year later,
that doesn’t seem to have taken place.
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In particular, the analytic and operational ecosystems both continue to thrive. Cloud data
waeheuses like Qrewdlalke have grown rapidly, focused largely on SQL users and business
intelligence use cases. But adoption of other technologies has also accelerated — data
lakehouses like Databricks, for instance, are adding customers faster than ever. Many data
teams we spoke with confirmed that heterogeneity is likely here to stay in the data stack.

Other core data systems — namely, ingestion and transformation — have proven similarly
durable. This is especially visible in the modern business intelligence pattern, where the
combination of Fivetran and dbt (or similar technologies) has become nearly ubiquitous. But it's
also true to an extent in operational systems, where de facto standards like Databricks/Spark,
Confluent/Kafka, and Astronomer/Airflow have emerged.

What’s new: Cambrian explosion

Around the stable core, the data stack has evolved rapidly over the past year. Broadly speaking,

we’ve seen the most activity in two areas:

New tools designed to support key data processes and workflows, like data discovery,
observability, or ML model auditing

New applications that allow data teams and business users to generate value from data in
new, more powerful ways, like data workspaces, reverse ETL, and ML application
frameworks

We’'re also seeing the introduction of some new technologies designed to enhance core data-
processing systems. Notably, there has been active debate around the metrics layer in the
analytical ecosystem and the lakehouse pattern for operational systems — both of which are
converging toward useful definitions and architectures.

Updated blueprints

With that context, we'll go into detail on each of the major data infrastructure blueprints. Each
section below shows an updated diagram (diff d against v1 of the stack) and an analysis of key
changes. These sections are intended primarily as reference for data teams implementing these
stacks, and reading them isn’t necessary to follow the rest of the post.

Blueprint 1: Modern Business Intelligence

Cloud-native business intelligence for companies of all sizes

https://al6z.com/emerging-architectures-for-modern-data-infrastructure/ 5/16
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Blueprint 1: Modern Business Intelligence
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Darker boxes are new or meaningfully changed since v1 of the architecture in 2020; lighter colored boxes have
remained largely the same. Gray boxes are considered less relevant to this blueprint.

(Amundsen, DataHub, Atlan, Alation)

What hasn’t changed:

The combination of data replication (like Fivetran), cloud data warehouses (like Snowflake),
and SQL-based data modeling (with dbt) continues to form the core of this pattern.
Adoption for these technologies has grown meaningfully, prompting the funding and early
growth of new competitors (e.g. Airbyte and Firebolt).

Dashboards continue to be the most common application used in the output layer, including
Looker, Tableau, PowerBl, and newer entrants like Superset.

What’s new:

There has been a surge of interest in the metrics layer, a system providing a standard set
of definitions on top of the data warehouse. This has been hotly debated, including what
capabilities it should have, which vendor(s) should own it, and what spec it should follow.
So far, we've seen several credible pure-play products (like Transform and Supergrain),
plus expansion into this category by dbt.

Reverse ETL vendors have grown meaningfully, particularly Hightouch and Census. The
purpose of these products is to update operational systems, like CRM or ERP, with outputs
and insights derived from the data warehouse.

Data teams are showing stronger interest in new applications to augment their standard
dashboards, especially data workspaces (like Hex). Broadly speaking, new apps are likely
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the result of increasing standardization in cloud data warehouses — once data is cleanly

TA B LStrusturedanpeassto access, data teams naturally want to do more with it.

Data discovery and observability companies have proliferated and raised substantial

amounts of capital (especially Monte Carlo and Bigeye). While the benefits of these

products are clear — i.e. more reliable data pipelines and better collaboration — adoption

is still relatively early, as customers discover relevant use cases and budgets. (Technical

note: although there are several credible new vendors in data discovery — e.g. Select Star,

Metaphor, Stemma, Secoda, Castor — we have excluded seed-stage companies from the

diagram in general.)

Blueprint 2: Multimodal Data Processing

Evolved data lakes supporting both analytic and operational use cases — also known as modern

infrastructure for Hadoop refugees

Blueprint 2: Multimodal Data Processing
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Note: Darker boxes are new or meaningfully changed since v1 of the architecture in 2020; lighter colored boxes have

remained largely the same. Gray boxes are considered less relevant to this blueprint.

What hasn’t changed:

Core systems in data processing (e.g. Databricks, Starburst, and Dremio), transport (e.g.

Confluent and Airflow), and storage (AWS) continue to grow rapidly and form the backbone

of this blueprint.

https://al6z.com/emerging-architectures-for-modern-data-infrastructure/

7/16


https://a16z.com/wp-content/uploads/2023/04/Blueprint-2_-Multimodal-Data-Processing-1.png

04.11.2025, 16:38 Emerging Architectures for Modern Data Infrastructure | Andreessen Horowitz

Multimodal data processing remains diverse by design, allowing companies to adopt the
TA B LSystemne bastrsuifedsto their particular needs across both analytics and operational data
applications.

What’s new:

There is growing recognition and clarity for the lakehouse architecture. We've seen this
approach supported by a wide range of vendors (including AWS, Databricks, Google
Cloud, Starburst, and Dremio) and data warehouse pioneers. The fundamental value of the
lakehouse is to pair a robust storage layer with an array of powerful data processing
engines like Spark, Presto, Druid/Clickhouse, Python libraries, etc.

The storage layer itself is getting an upgrade. While technologies like Delta, Iceberg, and
Hudi are not new, they are seeing accelerated adoption and are being built into commercial
products. Some of these technologies (particularly Iceberg) also interoperate with cloud
data warehouses like Snowflake. If heterogeneity is here to stay, this is likely to become a
key part of the multimodal data stack.

There may be an uptick in adoption taking place for stream processing (i.e., real-time
analytical data processing). While first-generation technologies like Flink still haven’t gone
mainstream, new entrants with simpler programming models (like Materialize and
Upsolver) are gaining early adoption, and, anecdotally, usage of stream processing
products from incumbents Databricks and Confluent has also started to accelerate.

Blueprint 3: Artificial Intelligence and Machine Learning

Stack for robust development, testing, and operation of machine learning models

https://al6z.com/emerging-architectures-for-modern-data-infrastructure/ 8/16
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Note: Darker boxes are new or meaningfully changed since v1 of the architecture in 2020; lighter colored boxes have
remained largely the same. Gray boxes are considered less relevant to this blueprint.

What hasn’t changed:

Tooling for model development is largely similar today compared to 2020, including the

major cloud vendors (e.g. Databricks and AWS), ML frameworks (e.g. XGBoost and

PyTorch), and experiment management tools (e.g. Weights & Biases and Comet)
Experiment management has effectively subsumed model visualization and tuning as
independent categories.

Building and operating a machine learning stack is complicated and requires specialized
expertise. This blueprint is not for the faint of heart — and productionizing Al is still
challenging for many data teams.

What’s new:

The ML industry is consolidating around a data-centric approach, emphasizing
sophisticated data management over incremental modeling improvements. This has
several implications:
Rapid growth for data labeling (e.g. Scale and Labelbox) and growing interest in
closed-loop data engines, largely modeled on Tesla’s Autopilot data pipelines.
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Increased adoption for feature stores (e.g. Tecton), for both batch and real-time use
TABLE OFCas8%; 88 R means to develop production-grade ML data in a collaborative way.

Revived interest in low-code ML solutions (like Continual and MindsDB) that at least
partially automate the ML modeling process. These newer solutions focus on bringing
new users (i.e. analysts and software developers) into the ML market.

Use of pre-trained models is becoming the default, especially in NLP, and providing
tailwinds to companies like OpenAl and Hugging Face. There are still meaningful problems
to solve here around fine-tuning, cost, and scaling.

Operations tools for ML (sometimes called MLops) are becoming more mature, built around
ML monitoring as the most in-demand use case and immediate budget. Meanwhile, a raft
of new operational tools — including, notably, validation and auditing — are appearing,
with the ultimate market still to be determined.

There is increased focus on how developers can seamlessly integrate ML models into
applications, including through pre-built APlIs (e.g. OpenAl), vector databases (e.g.
Pinecone), and more opinionated frameworks.

The data platform hypothesis

To recap: Over the past year, the data infrastructure stack has seen substantial stability in core
systems and rapid proliferation of supporting tools and applications.To help explain why this
might be happening, we introduce here the idea of data platforms.

What is a platform?

The word “platform” is overloaded in the data ecosystem, often used by internal teams to
describe their whole tech stacks or by vendors to sell loosely connected product suites.

In software more broadly, a platform is something other developers can build on top of. Platforms
generally provide limited value on their own — most users have no interest, for instance, in
accessing the guts of Windows or iOS. But they provide an array of benefits, like a common
programming interface and a large installed base, that allow developers to build and distribute
the applications users ultimately care about.

The defining trait of a platform, from an industry standpoint, is mutual dependence — both
technically and economically — between an influential platform provider and a large pool of 3rd-
party developers.
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What is a data platform?

Historically, the data stack has not been an obvious fit for the definition of a platform. Mutual
dependence existed — among ETL, data warehouse, and reporting vendors, for instance — but
the integration model tended to be one-to-one, rather than one-to-many, and was supplemented

heavily by professional services.
According to a number of data experts we spoke with, this may be starting to change.

The platform hypothesis argues that the “backend” of the data stack — roughly defined as data
ingestion, storage, processing, and transformation — has started to consolidate around a
relatively small set of cloud-based vendors. As a result, customer data is being collected in a
standard set of systems, and vendors are investing heavily to make this data easily accessible to
other developers — as a fundamental design principle in systems like Databricks, and via SQL
standards plus custom compute APlIs in systems like Snowflake.

“Frontend” developers, in turn, have taken advantage of this single point of integration to build
out a range of new applications. They rely on clean, joined data in the data
warehouse/lakehouse, without worrying about the underlying details of how it got there. A single
customer may buy and build many applications on top of one core data system. We're even
starting to see traditional enterprise systems, like financial or product analytics, being rebuilt with

a “warehouse-native” architecture.

The picture might look like this:
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To be clear, this doesn’t mean that OLTP databases or other important backend technologies will
disappear in the near future. But native integration with OLAP systems may become a critical
component of application development. And over time, more and more business logic and
application functionality could transition to this model. We may see a whole class of new products

built on this data platform.

The emergence of data apps?

The data platform hypothesis is still very much open to debate. However, we are seeing an
increase in sophisticated vertical SaaS solutions implemented as horizontal layers on top of the
data platforms. And so, while early, we’d argue that the changes taking place in the data stack

are at least consistent with the idea that platforms are taking hold.
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There are many reasons, for example, that companies like Snowflake and Databricks have
bagome siable pigges)pf the data stack, including great products, capable sales teams, and low-
friction deployment models. But there’s also a case to be made that their stickiness is reinforced
by platform dynamics — once a customer has built and/or integrated a range of data applications
with one of these systems, it often doesn’t make sense to transition off.

A similar argument can be made for the surge of new data infrastructure products in recent
years. The typical explanations for this trend have to do with vast troves of data, increasing
corporate budgets, and a glut of VC funding. But those things have arguably been true for
decades. The reason we’re seeing so many new products appear now may have to do with
platforms — namely, that it's never been easier to get a new data application adopted, and it's
never been more important to properly maintain the platform.

Finally, the platform hypothesis provides some predictive power in terms of competitive
dynamics. At scale, platforms can be extremely valuable. Core data systems vendors may be
competing aggressively today not just for current budgets, but for a long-term platform position.
Eye-popping valuations for data ingestion and transformation companies — or especially heated
debates over new categories like the metrics layer or reverse ETL — also make more sense if
you believe they are a core part of the emerging data platform.

Looking ahead

We're still in the early stages of defining the analytical and operational data platform, and the
pieces of the platform are in flux. As such, it's probably more useful as an analogy than as a strict
definition. But it may be a useful tool to filter signal from noise, and to help develop a sense of
why the market is moving the way it is. Data teams now have more tools, resources, and
organizational momentum behind them than at any point (likely) since the invention of the
database. And we’re very excited to see how the app layer evolves on top of the emerging
platforms.

List of contributors to Emerging Data Architectures (all versions): Peter Bailis, Mike del Balso,
Max Beauchemin, Scott Clark, Jamie Davidson, George Fraser, Krishna Gade, Ali Ghodsi, Abe
Gong, Nick Handel, Tristan Handy, Shinji Kim, Mars Lan, Xiangrui Meng, Clemens Mewald, Bob
Muglia, Jad Naous, Robert Nishihara, Diego Oppenheimer, Amit Prakash, Ori Rafael, Praveen
Rangnath, Nick Schrock, Benn Stancil, Carl Steinbach, lon Stoica, Kevin Stumpf, Arsalan
Tavakoli, Venkat Venkataramani, Don Vu, Reynold Xin, FJ Yang, Matei Zaharia.

Stay up to date on the latest from a16z Infra
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