
22
NDND

ED I T IO
N

ED I T IO
N

The Big Book
of MLOps

eBook

NOW INCLUDING A
SECTION ON LLMOPS

J O S E P H B R A D L E Y | R A F I K U R L A N S I K | M A T T T H O M S O N | N I A L L T U R B I T T

M O D E LO P S DATAO P S D E VO P S

Introduction .. 5

Big Book of MLOps V1 Recap ... 6

Why should I care about MLOps? ... 6

Guiding principles .. 6

Semantics of development, staging and production .. 7

ML deployment patterns .. 8

What’s New? .. 10

Unity Catalog ... 10

Benefits and architecture implications .. 11

Model Serving ... 13

	 Benefits	and	architecture	implications	 ... 13

Lakehouse Monitoring .. 15

	 Benefits	and	architecture	implications	 .. 15

Design Decisions ... 17

Unity Catalog ... 17

	 Organizing	data	and	AI	assets	 .. 17

 Concepts	 .. 18

 Considerations	 .. 21

 Recommended	organization	 .. 23

Model Serving ... 27

 Pre-deployment	testing	 ... 28

 Real-time	model	deployment	 ... 29

 Implementing	in	Databricks	 ... 30

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Contents

2BIG BOOK OF MLOPS - 2ND EDIT ION

Reference Architecture .. 31

Multi-environment view ... 32

Development .. 34

 Data ... 35

	 Exploratory	data	analysis	(EDA)	 .. 35

 Project	code	 .. 36

	 Model	training	development	 ... 36

 Model	validation	and	deployment	development ... 37

 Commit	code	 ... 38

Staging .. 39

 Data	 ... 40

	 Merge	code	 .. 40

	 Integration	tests	(CI)	.. 40

 Merge .. 41

	 Cut	release	branch .. 41

Production ... 42

	 Model	training	 .. 44

	 Model	validation	 .. 45

	 Model	deployment	 ... 46

 Model	Serving	 .. 48

	 Inference:	batch	or	streaming	... 48

 Lakehouse	Monitoring	 .. 49

	 Retraining	 ... 49

Implementing MLOps on Databricks .. 50

CHAPTER 5Contents

3BIG BOOK OF MLOPS - 2ND EDIT ION

LLMOps ... 51

What changes with LLMs? .. 51

Key components of LLM-powered applications .. 54

	 Prompt	engineering ... 54

	 Leveraging	your	own	data ... 56

	 Retrieval	augmented	generation	(RAG) ... 58

	 	 Typical	RAG	workflow ... 59

	 Vector	database .. 60

	 	 Benefits	of	vector	databases	in	a	RAG	workflow ... 61

	 Fine-tuning	LLMs... 62

 When	to	use	fine-tuning? .. 63

	 	 Fine-tuning	in	practice .. 63

 Pre-training ... 64

	 	 When	to	use	pre-training? .. 64

	 	 Pre-training	in	practice ... 65

	 Third-party	APIs	vs.	self-hosted	models ... 66

	 Model	evaluation ...67

 LLMs	as	evaluators .. 69

	 	 Human	feedback	in	evaluation ... 69

	 Packaging	models	or	pipelines	for	deployment ..70

 LLM	Inference ... 71

	 	 Real-time	inference .. 71

	 	 Batch	inference ... 71

	 	 Inference	with	large	models .. 72

	 	 Managing	cost/performance	trade-offs ... 72

	 	 	 Methods	for	reducing	costs	of	inference ..73

Reference architecture .. 74

	 RAG	with	a	third-party	LLM	API .. 74

	 RAG	with	a	fine-tuned	OSS	model ..75

Conclusion ... 78

CHAPTER 6

CHAPTER 7

Contents

4BIG BOOK OF MLOPS - 2ND EDIT ION

MLOps	=	DataOps + DevOps + ModelOps

Machine	learning	operations	(MLOps)	is	a	rapidly	evolving	field	where	building	and	maintaining	robust,	flexible	

and	efficient	workflows	is	critical.	At	Databricks,	we	view	MLOps	as	the	set	of	processes	and	automation	for	

managing	data,	code	and	models	to	improve	performance	stability	and	long-term	efficiency	in	ML	systems.	

Distilling	this	into	a	single	equation:	

Through	this	lens,	we	strive	to	continuously	innovate	and	advance	our	product	offerings	to	simplify	the	ability	

to	build	AI-powered	solutions	on	the	Lakehouse.	We	believe	there	is	no	greater	accelerant	to	delivering	ML	to	

production	than	building	on	a	unified,	data-centric	AI	platform.	On	Databricks,	both	data	and	models	can	be	

managed	and	governed	in	a	single	governance	solution	in	the	form	of	Unity	Catalog.	The	previously	complex	

infrastructure	required	to	serve	real-time	models	can	now	be	replaced	and	easily	scaled	with	Databricks	Model	

Serving.	Long-term	efficiency	and	performance	stability	of	ML	in	production	can	be	achieved	using	Databricks	

Lakehouse	Monitoring.	These	components	collectively	form	the	data	pipelines	of	an	ML	solution,	all	of	which	can	

be	orchestrated	using	Databricks	Workflows.

Perhaps	the	most	significant	recent	change	in	the	machine	learning	landscape	has	been	the	rapid	advancement	

of	generative	AI.	Generative	models	such	as	large	language	models	(LLMs)	and	image	generation	models	have	

revolutionized	the	field,	unlocking	previously	unattainable	levels	of	natural	language	and	image	generation.	

However,	their	arrival	also	introduces	a	new	set	of	challenges	and	decisions	to	be	made	in	the	context	of	MLOps.	

With	all	these	developments	in	mind,	we’re	excited	to	present	this	updated	version	of	the	Big	Book	of	MLOps.	

This	guide	incorporates	new	Databricks	features	such	as	Models	in	Unity	Catalog,	Model	Serving,	and	Lakehouse	

Monitoring	into	our	MLOps	architecture	recommendations.	We	start	by	outlining	the	themes	that	still	remain	

relevant	from	the	previous	version	of	the	Big	Book	of	MLOps.	Following	this,	we	unpack	the	new	features	

introduced	in	this	version,	their	impact	on	the	previous	reference	architecture,	and	best	practices	when	

incorporating	these	into	your	MLOps	workflows.	Next,	we	present	our	updated	MLOps	reference	architecture,	

along	with	the	details	of	its	processes.	Finally,	we	provide	guidance	for	deploying	generative	AI	applications	to	

production	on	Databricks,	focusing	on	productionizing	LLMs.

CHAPTER 1

Introduction

5BIG BOOK OF MLOPS - 2ND EDIT ION

https://en.wikipedia.org/wiki/DataOps
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/ModelOps
https://www.databricks.com/glossary/data-lakehouse
https://www.databricks.com/product/unity-catalog
https://docs.databricks.com/machine-learning/model-serving/index.html#model-serving-with-databricks
https://docs.databricks.com/machine-learning/model-serving/index.html#model-serving-with-databricks
https://docs.databricks.com/en/lakehouse-monitoring/index.html
https://docs.databricks.com/en/lakehouse-monitoring/index.html
https://docs.databricks.com/workflows/index.html

CHAPTER 2

Big Book of MLOps
V1 Recap

We	begin	with	a	brief	recap	of	the	core	points	discussed	in	the	previous	version	of	the	Big	Book	of	MLOps.	

While	the	recommended	reference	architecture	has	evolved	due	to	new	features	and	product	updates,	

the	core	themes	discussed,	such	as	the	importance	of	MLOps,	guiding	principles	and	the	fundamentals	

of	MLOps	on	Databricks,	remain	pertinent.	In	this	section	we	focus	on	summarizing	those	elements	that	

remain	unchanged.	For	a	more	in-depth	discussion	of	any	of	these	points,	we	refer	the	reader	to	last	year’s	

Big Book of MLOps.

Why should I care about MLOps?
We	continue	to	stress	the	importance	of	defining	an	effective	MLOps	strategy.	Databricks	customers	

like	CareSource,	which	has	since	implemented	our	recommended	MLOps	architecture,	have	witnessed	

firsthand	the	value	this	can	bring.	Through	streamlining	the	process	of	delivering	models	to	production,	

time	to	business	value	is	accelerated.	This	efficiency	has	the	knock-on	effect	of	giving	data	science	teams	

the	freedom	and	confidence	to	transition	to	subsequent	projects	without	the	need	for	continuous	manual	

oversight	of	models	in	production.	

Guiding principles
One	guiding	principle	that	continues	to	lie	at	the	heart	of	the	Lakehouse	AI	vision	is	taking	a	data-centric	

approach	to	machine	learning.	With	the	increasing	prevalence	of	generative	AI,	this	perspective	remains	

just	as	important.	The	core	constituents	of	any	ML	project	can	be	viewed	simply	as	data	pipelines:	feature	

engineering,	training,	model	deployment,	inference	and	monitoring	pipelines	are	all	data	pipelines.	As	such,	

operationalizing	an	ML	solution	requires	joining	data	from	predictions,	monitoring	and	feature	tables	with	

other	relevant	data.	Fundamentally,	the	simplest	way	to	achieve	this	is	to	develop	AI-powered	solutions	on	

the	same	platform	used	to	manage	production	data.

M o d e l O p s D a t a O p s D e � O p s

6BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.databricks.com/sites/default/files/2023-10/the-big-book-of-mlops-v9-071023.pdf
https://www.databricks.com/blog/2023/04/03/saving-mothers-ml-how-mlops-improves-healthcare-high-risk-obstetrics.html

Semantics of development, staging and production

E X E C U T I O N E N V I R O N M E N T

Code Data Models

An	ML	solution	comprises	data,	code	and	models.	These	assets	need	to	be	developed,	tested	(staging)	

and	deployed	(production).	For	each	of	these	stages,	we	also	need	to	operate	within	an	execution	

environment.	As	such,	each	of	data,	code,	models	and	execution	environments	are	notionally	divided	into	

development,	staging	and	production.	

Each of these stages has distinct access controls and quality guarantees,	ranging	from	the	open	and	

exploratory	development	stage	through	to	the	locked-down	and	quality-assured	production	stage.

Note: Throughout this paper we operate under

the assumption of three distinct execution

environments — development, staging and

production — in the form of three separate

Databricks workspaces. There can be variations

of these three stages, such as alternative

naming conventions or splitting staging into

separate “test” and “QA” substages. Although not

recommended, it is also possible to create three

distinct environments within a single Databricks

workspace through the use of access controls

and Git branches. Regardless of how environment

separation is achieved, the core principles of the

workflow and recommendations presented are

generally applicable.

DEVELOPED

development staging production

TESTED DEPLOYED

7BIG BOOK OF MLOPS - 2ND EDIT ION

ML deployment patterns
Code and models often progress asynchronously through	these	stages.	Thus,	it	becomes	crucial	to	

leverage	a	solution	that	allows	for	the	management	of	model	artifacts	independently	of	code,	making	it	

possible	to	update	a	production	model	without	necessarily	making	a	code	change.	Data,	much	like	code	

and	models,	can	be	labeled	as	development,	staging	or	production,	indicating	not	only	its	origin	but	also	

its	quality	and	reliability.	

Given	the	independent	lifecycles	of	code	and	models,	there	are	two	opposing	strategies	to	moving	code	

and	ML	models	from	development,	through	staging	and	subsequently	to	production:

dev

staging prod

D E P L O Y C O D E

				Code	for	an	ML	project	is	developed	in	the	development	environment,	and	this	code	is	then	

moved	to	the	staging	environment,	where	it	is	tested.	Following	successful	testing,	the	project	

code	is	deployed	to	the	production	environment,	where	it	is	executed.

				Model	training	code	is	tested	in	the	staging	environment	using	a	subset	of	data,	and	the	model	

training	pipeline	is	executed	in	the	production	environment

				The	model	deployment	process	of	validating	a	model	and	additionally	conducting	comparisons	

versus	any	existing	production	model	all	run	within	the	production	environment	

8BIG BOOK OF MLOPS - 2ND EDIT ION

				Model	training	is	executed	in	the	development	environment.	The	produced	model	artifact	is	then	

moved	to	the	staging	environment	for	model	validation	checks,	prior	to	deployment	of	the	model	to	

the	production	environment.

				This	approach	requires	a	separate	path	for	deploying	ancillary	code	such	as	inference	and	

monitoring	code.	Subsequently,	any	pipelines	that	need	to	run	in	the	production	environment	to	

support	the	operationalization	of	the	model	will	necessarily	need	to	go	through	a	separate	“deploy	

code”	lifecycle	—	the	code	for	these	components	being	tested	in	staging	and	then	deployed	to	

production.

				This	pattern	is	typically	used	when	deploying	a	one-off	model,	or	when	model	training	is	expensive	

and	read-access	to	production	data	from	the	development	environment	is	possible

As	in	our	prior	paper,	we	recommend a deploy code approach for the majority of use cases,	and	the	

reference	architecture	presented	in	this	update	continues	to	follow	this	recommendation.

dev

staging prod

D E P L O Y M O D E L S

9BIG BOOK OF MLOPS - 2ND EDIT ION

CHAPTER 3

What’s New? In	this	section	we	outline	the	key	features	and	product	updates	introduced	into	our	updated	MLOps	

reference	architecture.	For	each	of	these,	we	highlight	the	benefits	they	bring	and	how	they	impact	our	

end-to-end	MLOps	workflow.

Unity Catalog
The	Lakehouse	forms	the	foundation	of	a	data-centric	AI	platform.	Key	to	this	is	the	ability	to	manage	

both	data	and	AI	assets	from	a	unified	governance	solution	on	the	Lakehouse.	Databricks	Unity	Catalog

enables	this	by	providing	centralized	access	control,	auditing,	lineage,	and	data	discovery	capabilities	

across	Databricks	workspaces.	

These	benefits	are	now	extended	to	MLflow	models	with	the	introduction	of	Models	in	Unity	Catalog.

By	providing	a	hosted	version	of	the	MLflow	Model	Registry	in	Unity	Catalog,	the	full	lifecycle	of	an	ML	

model	can	be	managed	while	leveraging	Unity	Catalog’s	capability	to	share	assets	across	Databricks	

workspaces	and	trace	lineage	across	both	data	and	models.

In	addition	to	managing	ML	models,	feature	tables	are	also	a	part	of	Unity	Catalog.	With	Feature	

Engineering	in	Unity	Catalog,	any	Delta	table	in	Unity	Catalog	that	has	been	assigned	a	primary	key	

(and	additionally	a	timestamp	key)	can	be	used	as	a	source	of	features	to	train	and	serve	models.	

Furthermore,	feature	tables	can	now	also	be	shared	across	different	workspaces,	and	lineage	recorded	

between	other	assets	in	the	Lakehouse.

Assets	of	an	ML	workflow,	all	managed	via	Unity	Catalog

UNITY CATALOG

Volumes
(raw	data)

Delta	tables Features Models Inference	tables Metric	tables

1 0BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.databricks.com/glossary/data-lakehouse
https://www.databricks.com/product/unity-catalog
https://mlflow.org/docs/latest/models.html
https://docs.databricks.com/machine-learning/manage-model-lifecycle/index.html
https://mlflow.org/docs/latest/model-registry.html
https://docs.databricks.com/machine-learning/feature-store/index.html#databricks-feature-store
https://docs.databricks.com/en/machine-learning/feature-store/workspace-feature-store/feature-tables.html
https://docs.databricks.com/en/machine-learning/feature-store/workspace-feature-store/feature-tables.html

BENEFITS AND ARCHITECTURE IMPLICATIONS

Unified governance
				Unity	Catalog	unlocks	the	ability	to	apply	the	same	governance	and	security	policies	to	both	data	

and	models.	Consolidating	these	assets	into	a	single,	unified	solution	facilitates	efficient	and	secure	

management,	and	more	generally	simplifies	the	overall	MLOps	solution.	

				From	an	architecture	design	standpoint,	this	means	the	flexibility	to	govern	both	data	and	AI	assets	

under	the	same	namespace,	enabling	management	at	the	environment,	project	or	team	level.

Read access to production assets
				With	Unity	Catalog,	data	and	models	are	governed	at	the	account	level,	promoting	easy	sharing	of	assets	

across	Databricks	workspaces.	Data	scientists	in	the	development	environment	can	be	granted	read-

only	access	to	data	and	AI	assets	from	the	production	environment.	The	specifics	of	cross-workspace	

permissions	can	be	adjusted	for	each	project	or	organization.

				The	implications	of	this	are	multifold:	Data	scientists	can	train	models	using	production	data,	

detect	and	debug	model	quality	degradation	by	examining	production	monitoring	tables,	deep	dive	on	

model	predictions	using	production	inference	tables,	and	easily	compare	in-development	models	with	

live	production	models.	This	not	only	accelerates	the	model	development	process	but	also	improves	the	

robustness	and	quality	of	the	developed	models.

Models in Unity Catalog
				It	is	now	recommended	to	register	Models	in	Unity	Catalog	in	place	of	the	classic	Workspace	Model	

Registry.	Models	will	be	registered	under	a	three-level	name	in	the	form	<catalog>.<schema>.<model>

(see	Organizing	data	and	AI	assets	for	a	more	detailed	walkthrough	of	this).	

				This	three-level	name	provides	the	ability	to	inherently	express	the	environment	a	model	was	produced	

in	and	apply	associated	governance	permissions	at	each	level	of	the	catalog/schema/registered	model	

hierarchy.	For	example,	permissions	can	be	configured	such	that	all	users	have	read-only	access	to	

models	in	the	prod	catalog,	only	ML	team	service	principals	can	create	new	models	in	the	use	case–

specific	prod.fraud_detection	schema,	and	all	members	of	the	fraud	detection	team	can	execute	model	

versions	in	the	prod.fraud_detection.fraud_clf registered	model.	

1 1BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/mlflow/models-in-uc.html
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/workspace-model-registry.html
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/workspace-model-registry.html

				The	model	alias	—	a	mutable,	named	reference	to	a	version	of	a	registered	model	—	can	be	used	

to	mark	a	model	for	deployment.	Inference	workloads	can	be	defined	to	target	a	specific	alias.	For	

example,	you	could	assign	the	“Champion”	alias	of	the	“fraud_clf”	registered	model	to	the	model	

version	that	should	serve	production	traffic.	The	inference	workload	of	the	fraud	detection	solution	

would	then	target	that	alias,	using	the	“Champion”	model	to	make	predictions.

Lineage
				With	Unity	Catalog,	a	robust	link	between	data	and	AI	assets	can	natively	be	recorded.	Lineage	can	

be	traced	from	a	model	version	in	Unity	Catalog	back	to	the	data	used	for	training.	Additionally,	

downstream	lineage	records	consumers	of	assets	in	Unity	Catalog.	For	example,	consumers	of	a	

registered	model	could	include	Model	Serving	endpoints	or	Workflows,	facilitating	impact	analysis	if	a	

regression	is	detected	in	the	model.

				This	lineage	also	extends	from	a	model	version	to	the	underlying	MLflow	run	in	MLflow	Tracking.

Parameters,	metrics,	artifacts	and	Git	information	can	all	be	tracked	to	this	MLflow	run.	Additionally,	

metadata	detailing	data	sources,	notebooks,	jobs	and	endpoints	associated	with	the	assets	will	be	

recorded	automatically	for	both	tables	and	models	stored	in	Unity	Catalog.	Designing	an	MLOps	

implementation	to	leverage	MLflow	during	model	training	ensures	that	this	full	lineage	can	be	captured	

from	the	beginning	of	a	model’s	lifecycle.

Discoverability
				Through	centralizing	data	and	AI	assets	in	a	single	solution,	Unity	Catalog	enhances	the	discoverability	

of	these	assets,	making	it	simpler	and	quicker	to	locate	and	utilize	the	appropriate	resources	for	

a	particular	component	of	the	MLOps	solution.	For	example,	teammates	with	access	to	view	each	

other’s	models	can	see	which	data	sources	are	being	used,	and	use	that	information	to	address	their	

own	use	cases.	

1 2BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/index.html
https://docs.databricks.com/en/workflows/index.html
https://mlflow.org/docs/latest/tracking.html

Model Serving
Databricks	Model	Serving	provides	a	production-ready,	serverless	solution	to	simplify	real-time	ML	model	

deployment.	With	Model	Serving,	it	is	possible	to	efficiently	deploy	models	as	an	API	so	that	you	can	

integrate	model	predictions	with	applications	or	websites.	Given	the	complexity	that	is	often	involved	with	

deploying	a	real-time	ML	model,	Model	Serving	reduces	operational	costs,	streamlines	the	ML	lifecycle,	and	

makes	it	easier	for	data	science	teams	to	focus	on	the	core	task	of	integrating	production-grade	real-time	

ML	into	their	solutions.

BENEFITS AND ARCHITECTURE IMPLICATIONS

Lakehouse native
				Model	Serving	natively	integrates	with	other	components	of	the	Lakehouse	platform,	such	as	Unity	

Catalog	and	MLflow.	When	a	registered	MLflow	model	is	served,	request-response	payloads	from	

Model	Serving	endpoints	can	be	automatically	logged	to	inference	tables	in	Unity	Catalog.	In	addition	

to	the	lineage	captured	from	an	inference	table	back	to	a	registered	model,	we	also	gain	the	ability	

to	implement	model	monitoring	(see	Lakehouse	Monitoring).	From	an	operational	perspective,	these	

production	inference	tables	can	be	made	available	to	data	scientists	in	the	development	environment.

				Given	its	close	integration	with	MLflow,	Model	Serving	can	automatically	build	a	container	from	a	logged	

MLflow	model	and	deploy	the	model	as	a	REST	endpoint.	This	abstracts	away	what	would	ordinarily	be	a	

notably	more	complex	process	for	the	user.	

				If	models	are	trained	using	ML	features	from	Unity	Catalog,	Model	Serving	uses	lineage	in	Unity	Catalog	

to	automatically	serve	features	for	batch	and	online	serving

1 3BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.databricks.com/blog/2023/03/07/announcing-general-availability-databricks-model-serving.html

Simplified deployment
				Data	scientists	or	ML	engineers	can	easily	create	a	Model	Serving	endpoint	from	a	model	version	without	

requiring	extensive	infrastructure	knowledge	or	experience.	Thus,	creating	or	updating	a	Model	Serving	

endpoint	becomes	a	trivial	additional	step	in	the	model	deployment	pipeline.

High availability and scalability
				Built	for	production	use,	Model	Serving	supports	very	low	latency	(p50	overhead	latency	of	less	than	10ms)	

and	high	query	volumes	(QPS	of	greater	than	25k),	and	can	automatically	scale	up	and	down	based	on	

demand.	This	ensures	optimal	performance	and	cost-efficiency.

				Model	deployment	configurations	should	be	robustly	tested	prior	to	exposing	a	real-time	model	endpoint	

to	production	traffic	to	meet	predefined	service	level	agreements	(SLAs).	As	such,	we	must	factor	such	

tests	into	our	MLOps	reference	architecture.	We	unpack	the	different	types	of	testing	that	can	be	

conducted	below	in	Testing	Model	Serving.	We	also	illustrate	how	this	testing	is	incorporated	into	an	

MLOps	workflow	in	the	Reference	Architecture	section.

Online evaluation
				Serving	real-time	models	often	involves	online	evaluation,	in	addition	to	standard	offline	model	evaluation	

approaches	typical	of	batch	or	streaming	inference	pipelines.	Your	choice	of	online	evaluation	strategies	

such	as	A/B	testing	or	canary	deployments	can	affect	the	design	and	implementation	of	pipelines	

being	deployed	to	production.	Model	Serving	facilitates	the	implementation	of	such	online	evaluation	

approaches	through	the	ability	to	serve	multiple	models	to	a	Model	Serving	endpoint.

				The	design	decisions	taken	around	online	evaluation	will	depend	on	use	case	requirements.	We	explore	

these	in	more	detail	in	the	Model	deployment	section	below.

Secure and cost effective
				Models	are	deployed	in	a	secure	network	boundary.	Model	Serving	leverages	serverless	compute	that	will	

terminate	when	the	model	is	deleted,	or	scaled	down	to	zero.

1 4BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/serve-multiple-models-to-serving-endpoint.html

Lakehouse Monitoring
Databricks	Lakehouse	Monitoring	is	a	data-centric	monitoring	solution	to	ensure	that	both	data	and	AI	

assets	are	of	high	quality,	accurate	and	reliable.	Built	on	top	of	Unity	Catalog,	it	provides	the	unique	ability	to	

implement	both	data	and	model	monitoring	while	maintaining	lineage	between	the	data	and	AI	assets	of	an	

MLOps	solution.	This	unified	and	centralized	approach	to	monitoring	greatly	simplifies	the	process	of	diagnosing	

errors,	detecting	quality	drift	and	performing	root	cause	analysis.	

BENEFITS AND ARCHITECTURE IMPLICATIONS

Lakehouse native
				Lakehouse	Monitoring	integrates	with	Unity	Catalog	to	automatically	write	monitoring	tables	to	the	

Lakehouse	—	computed	metrics	are	stored	in	Delta	tables	called	metric	tables.	All	the	advantages	of	Unity	

Catalog	as	outlined	previously	thus	apply.	A	key	benefit	is	the	streamlined	process	of	joining	monitoring	

tables	with	others	in	the	Lakehouse,	providing	an	efficient	way	to	cross-analyze	data.	Users	can	perform	

these	analyses	using	SQL,	and	present	results	in	both	dashboards	and	notebooks.

				The	core	aim	of	Lakehouse	Monitoring	is	to	expedite	the	ability	to	detect	and	diagnose	deviations	in	

data	or	model	quality.	Thus,	configuring	appropriate	permissions	on	production	monitoring	tables	and	

dashboards	such	that	they	are	accessible	to	data	scientists	should	be	factored	into	the	production	

deployment	process.

				To	keep	monitoring	tables	up	to	date,	Lakehouse	Monitoring	APIs	allow	you	to	schedule	a	refresh	of	the	

metric	tables	on	a	regular	basis

Monitoring with Model Serving
				Lakehouse	Monitoring	has	tight	integration	with	Model	Serving,	in	particular	allowing	the	ability	to	monitor	

inference	tables	produced	by	a	Model	Serving	endpoint.	With	this	integration,	a	pipeline	can	be	created	

to	process	logged	requests	and	responses	from	a	Model	Serving	inference	table,	join	with	other	relevant	

tables	in	the	Lakehouse	(e.g.,	labels	or	business	metrics)	and	run	Lakehouse	Monitoring	on	the	resulting	

table	to	produce	data	and	model	quality	metrics.	

1 5BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/lakehouse-monitoring/index.html
https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html
https://docs.databricks.com/en/lakehouse-monitoring/create-monitor-ui.html#schedule
https://docs.databricks.com/en/machine-learning/model-serving/inference-tables.html

Simplification
				Lakehouse	Monitoring	provides	a	single	monitoring	tool	and	experience,	regardless	of	whether	

monitoring	data	or	AI.	At	present	this	is	the	only	tool	that	supports	a	common	API	for	monitoring	

both	models	and	data.

Customization
				Users	can	introduce	custom	metrics	based	on	specific	business	needs,	further	enhancing	

monitoring	capabilities.	Custom	metrics	can	include	aggregates	or	drift	metrics	that	adhere	to	

specific	business	logic.

				Additionally,	it	is	possible	to	examine	model	performance	on	given	data	slices.	This	is	often	crucial	

to	catch	errors	in	subpopulations	of	interest,	or	when	evaluating	bias/fairness.	

Dashboards and alerts
				Lakehouse	Monitoring	automatically	generates	a	Databricks	SQL	dashboard	for	visualizing	computed	

monitoring	metrics.	Additionally,	this	generated	dashboard	has	user-editable	parameters	for	both	

the	whole	dashboard	and	individual	charts,	allowing	users	to	customize	the	date	range,	slicing	logic,	

model	versions,	etc.	Users	can	also	add	their	own	charts	to	the	dashboard	that	join	the	monitoring	

metrics	with	external	business	data.

 		Alerts	can	be	defined	against	metrics	in	the	generated	metrics	tables.	A	natural	evolution	to	this	

is	to	set	up	alerts	when	quality	or	performance	indicators	deviate	from	expectations.	This	can	be	

achieved	using	Databricks	SQL	alerts	operating	on	a	defined	Databricks	SQL	query.	The	definition	

of	this	alerting	criteria,	and	frequency	of	evaluation,	will	subsequently	become	part	of	the	code	

deployed	to	the	production	environment.

1 6BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/sql/user/dashboards/index.html
https://docs.databricks.com/en/sql/user/alerts/index.html
https://docs.databricks.com/en/sql/user/queries/index.html

CHAPTER 4

Design Decisions Before	presenting	our	updated	reference	architecture,	let’s	highlight	a	number	of	design	considerations	you	

should	take	into	account	when	first	architecting	an	MLOps	solution	on	Databricks.	

Unity Catalog

ORGANIZING DATA AND AI ASSETS

One	architectural	decision	that	extends	beyond	a	single	MLOps	solution	is	defining	how	both	data	and	

AI	assets	are	organized	within	Unity	Catalog.	Below	are	a	few	factors	motivating	why	thoughtful	organization	

of	AI	assets	within	Unity	Catalog	is	essential.

Efficiency and accessibility

				With	a	growing	number	of	AI	assets,	organizations	can	face	a	situation	where	data	and	models	are	

spread	across	different	platforms	and	storage	systems.	This	dispersion	can	make	it	difficult	to	find,	

manage	and	govern	AI	assets.

				A	well-structured	organization	of	data	and	AI	assets	within	Unity	Catalog	ensures	that	data	scientists,	

ML	engineers	and	other	stakeholders	can	easily	locate	and	access	the	resources	they	need.	This	

reduces	the	time	spent	searching	for	specific	models	or	tables,	and	allows	more	time	for	actual	use	

case	development.

Scalability
				As	an	organization’s	data	needs	grow,	so	too	does	the	number	of	AI	assets.	A	well-architected	

Unity	Catalog	structure	helps	manage	this	growth,	ensuring	that	the	number	of	use	cases	can	scale	

smoothly	without	becoming	unmanageable.

				Having	a	well-defined	structure	to	store	AI	assets	further	facilitates	the	addition	of	new	data	and	

ML	models	without	disrupting	existing	use	cases	in	production

				Further,	a	well-defined	MLOps	workflow	enforces	a	standardized	approach	to	deploying	AI	assets	to	

production	using	Unity	Catalog.	This	facilitates	scalability	to	many	use	cases	within	an	organization.

1 7BIG BOOK OF MLOPS - 2ND EDIT ION

Governance
				By	categorizing	and	structuring	data	and	AI	assets	in	a	well-defined	manner,	organizations	can	

implement	effective	access	controls	using	Unity	Catalog,	ensuring	that	only	authorized	individuals	

can	access	certain	data	or	models.	In	many	cases	this	is	required	for	compliance	with	data	

protection	regulations,	and	for	maintaining	data	privacy	and	security.

				For	the	purposes	of	auditability,	Unity	Catalog	captures	a	log	of	actions	performed	against	the	

metastore,	and	these	logs	are	delivered	as	part	of	Databricks	audit	logs.

Collaboration
				In	many	organizations,	multiple	teams	or	individuals	will	be	working	with	the	same	AI	assets	—	

sharing	features	and	models	across	different	use	cases

				Consolidating	both	data	and	AI	assets	into	a	centralized	location,	and	clearly	delineating	where	

specific	assets	are	located	and	how	they	should	be	used,	facilitates	collaboration

CONCEPTS

Unity	Catalog	has	a	number	of	core	concepts	that	we	should	define	before	unpacking	the	considerations	

when	organizing	AI	assets	along	with	data	in	Unity	Catalog.

UNITY CATALOG

CATALOG

SCHEMA

Tables Volumes Functions Models

1 8BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/administration-guide/account-settings/audit-logs.html

Catalog
Akin	to	a	database.	It	serves	as	a	container	for	all	your	data	and	AI	assets,	such	as	tables	and	models.	

A	catalog	can	be	thought	of	as	a	namespace	for	these	data	and	AI	assets.	Later,	in	our	proposed	architecture,	

we	will	illustrate	separate	“dev,”	“staging”	and	“prod”	catalogs.	These	catalogs	will	contain	data	and	AI	models	

corresponding	to	the	environment	in	which	they	were	produced.	

Schema
A	logical	construct	within	a	catalog	that	groups	related	tables,	views	and	models	together.	Put	simply,	

it’s	a	way	to	organize	related	assets	within	a	catalog.

Data tables
Data	tables	are	the	leaf	level	assets	in	Unity	Catalog	and	can	be	referenced	using	a	three-level	name	

provided	in	the	form		<catalog>.<schema>.<table> .	Any	Delta	table	that	has	a	primary	key	(and	optionally	

a	time	series	key)	can	be	used	as	a	source	of	ML	features	which	can	be	joined	with	training	samples	to	train	

an	ML	model.

Volume
Represents	a	logical	volume	of	storage	in	a	cloud	object	storage	location.	Volumes	provide	capabilities	for	

accessing,	storing,	governing	and	organizing	files.	While	tables	provide	governance	over	tabular	data	sets,	

volumes	add	governance	over	non-tabular	data	sets.	You	can	use	volumes	to	store	and	access	files	in	any	

format,	including	structured,	semi-structured	and	unstructured	data.	A	volume	will	reside	within	a	schema,	

under	<catalog>.<schema>.<volume-name>.

1 9BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/data-governance/unity-catalog/create-volumes.html#create-volumes

Functions
SQL	and	Python	UDFs	are	a	part	of	Unity	Catalog	and	can	be	accessed	using	a	three-level	name	provided	

in	the	form		<catalog>.<schema>.<function>.		Functions	enable	the	ability	to	use	Python	UDFs	to	compute	

on-demand	features	as	inputs	for	machine	learning,	and	can	be	used	in	model	training,	batch	inference	

and	real-time	inference.	Functions	are	appropriate	in	cases	where	fresh	features	(e.g.,	computing	a	user’s	

distance	to	a	restaurant)	need	to	be	computed	at	inference	time,	or	where	features	from	data	sources	

cannot	be	pre-materialized	to	a	data	lake	for	regulatory	or	security	reasons	(e.g.,	a	user’s	credit	score).

Registered model
An	MLflow	model	that	has	been	registered	to	Unity	Catalog.	The	registered	model	has	a	unique	name,	

versions,	model	lineage	and	other	metadata.	When	registering	a	model	to	Unity	Catalog,	a	three-level	name	

is	provided	in	the	form	<catalog>.<schema>.<model>.

Model version
A	version	of	a	registered	model.	When	a	new	model	is	added	to	the	Model	Registry,	it	is	added	as	Version	1.	

Each	model	registered	to	the	same	model	name	increments	the	version	number.	A	specific	model	version	

can	be	loaded	using	the	model	URI	models:/<catalog>.<schema>.<model>/<model_version>.

Model alias
A	mutable,	named	reference	to	a	particular	version	of	a	registered	model.	Typical	uses	of	aliases	are	to	

specify	which	model	version	should	be	deployed	in	a	model	deployment	pipeline,	or	to	write	inference	

workloads	that	target	a	specific	alias.	Aliases	are	flexible,	and	as	such	can	be	tailored	to	suit	your	use	

case	or	organization	requirements.	For	example,	you	could	assign	the	model	version	that	should	serve	the	

majority	of	production	traffic	the	“Champion”	alias.	Inference	workloads	could	then	target	that	alias	using	

the	model	URI	models:/<catalog>.<schema>.<model>@Champion.

2 0BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/mlflow/models-in-uc-example.html#load-model-versions-using-the-api

CONSIDERATIONS

When	designing	how	to	organize	your	data	and	AI	assets	in	Unity	Catalog,	it’s	worth	considering	how	to	best	

leverage	the	three-level	namespace	of	catalog,	schema	and	entity	name.	For	example:

 1 Do	you	equate	each	schema	to	a	different	business	unit	or	team,	under	which	tables	and	models	

specific	to	that	business	unit	or	team	reside?

 2 Do	you	have	schemas	within	a	catalog	mapped	to	a	medallion	architecture	of	Bronze,	Silver	and	

Gold	tables?	If	so,	where	do	feature	tables	and	ML	models	then	reside?

While	there	is	no	one-size-fits-all	approach	to	managing	AI	assets	with	data	in	Unity	Catalog,	there	are	a	

number	of	guiding	principles	that	can	be	applied	when	contending	with	these	decisions:

 Team size

The	size	of	a	team	can	influence	the	level	of	detail	in	the	organizational	structure	of	data	and	AI	assets	

in	Unity	Catalog.	Larger	teams	might	require	more	granular	categorizations	(e.g.,	specifying	a	schema	

per	business	unit	or	team),	while	smaller	teams	might	function	well	with	a	simpler	structure	(e.g.,	all	

teams	operating	across	shared	schemas	—	Bronze,	Silver,	Gold	—	within	each	catalog).

 Complexity of projects

More	complex	projects,	involving	the	registration	of	many	different	models,	may	necessitate	dedicated	

schemas	per	project.	It	should	be	noted,	however,	that	this	requirement	can	be	handled	in	some	

cases	through	the	creation	of	a	custom	MLflow	PyFunc	model.	This	approach	can	be	used	to	create	a	

wrapper	around	many	models	using	a	single	PyFunc	model,	which	can	then	be	registered	in	the	same	

fashion	as	any	other	individual	model.

2 1BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.databricks.com/glossary/medallion-architecture
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html

 Access levels and permissions

Consideration	should	be	given	to	the	different	access	levels	and	permissions	that	will	be	required.	

Some	assets	might	need	to	be	accessible	to	everyone	on	a	given	team,	while	others	should	be	

restricted	to	specific	individuals	or	roles.	With	Unity	Catalog,	both	data	and	AI	assets	can	be	grouped	

and	governed	at	the	environment,	project	or	team	level.

 Models, functions and features in Unity Catalog

With	Models	in	Unity	Catalog,	AI	artifacts	can	be	governed	in	the	same	way	as	data	in	the	Lakehouse.	

This	unified	governance	enables	the	sharing	of	models	across	Databricks	workspaces,	and	teams	

within	an	organization.	As	such,	where	models,	functions	and	features	reside	within	a	given	catalog	is	

often	determined	by	organizational	requirements	around	sharing	of	these	assets	across	teams	and	

use	cases.	From	a	catalog	perspective,	Models	in	Unity	Catalog	should	be	treated	no	differently	than	

data	in	Unity	Catalog	—	models	are	registered	to	a	catalog	indicating	the	environment	in	which	they	

were	produced.	Aliases	can	then	provide	the	ability	to	indicate	which	models	are	deployed	in	which	

contexts	(e.g.,	a	“Champion”	model	serves	the	majority	of	production	traffic,	while	the	“Challenger”	

model	serves	a	small	fraction	for	testing).

 Discoverability

A	standardized	approach	across	teams	in	how	assets	are	organized	within	Unity	Catalog	is	important	

for	setting	up	ACLs	and	discoverability.	Notably,	there	are	also	methods	like	tags	to	aid	discoverability.

2 2BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/data-governance/unity-catalog/manage-privileges/index.html
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html#deploy-and-organize-models-with-aliases-and-tags

RECOMMENDED ORGANIZATION

While	there	is	no	universal	blueprint	for	organizing	data	and	AI	assets	in	Unity	Catalog,	the	structure	we	

propose	below	serves	as	a	robust	starting	point.	It’s	designed	with	flexibility	in	mind,	providing	a	clear	

demarcation	between	assets	created	in	different	environments	while	also	enabling	simplified	discoverability,	

sharing,	and	governance	of	data	and	AI	assets	across	teams.	Notably,	we	replicate	the	structure	across	dev,	

staging	and	prod	catalogs.	This	enables	users	to	develop	and	test	against	catalog	structures	—	dev	and	

staging,	respectively	—	mirroring	that	of	the	production	environment.	For	this	example,	we	show	all	ML	assets	

for	a	specific	“fraud	detection”	use	case	organized	under	a	single	“fraud_detection”	schema.

dev

bronze

 > Tables:

 silver

 > Tables:

 gold

 > Tables:

 user_features

 product_features

 fraud_detection

 > Tables:

 offline_location_features

 fraud_clf_inference

 fraud_clf_metrics

 > Volumes:

 > Models:

 fraud_clf

 > Functions:

 compute_distance

bronze

 > Tables:

 silver

 > Tables:

 gold

 > Tables:

 user_features

 product_features

 fraud_detection

 > Tables:

 fraud_clf_inference

 fraud_clf_metrics

 > Volumes:

 > Models:

 fraud_clf

 > Functions:

 compute_distance

bronze

 > Tables:

 silver

 > Tables:

 gold

 > Tables:

 user_features

 product_features

 fraud_detection

 > Tables:

 fraud_clf_inference

 fraud_clf_metrics

 > Volumes:

 > Models:

 fraud_clf

 > Functions:

 compute_distance

staging prod

2 3BIG BOOK OF MLOPS - 2ND EDIT ION

Catalog level
At	the	catalog	level,	assets	are	segregated	based	on	the	environment	from	which	they	were	produced.	

As	a	result,	teams	have	an	inherent	understanding	of	the	maturity	and	readiness	of	each	asset.

dev	catalog

 Assets	under	active	development	and	testing.	We	illustrate	additional	tables	and	models	within	

this	catalog,	indicative	of	new	assets	in	development.	

 Relatively	open	access,	enabling	users	to	easily	read	and	write	assets	during	the	development	process

staging	catalog

 Used	as	an	area	for	writing	assets	produced	during	the	testing	of	code	in	the	staging	environment	

prior	to	deployment	to	the	production	environment

 Additionally,	this	catalog	could	also	be	used	to	store	more	permanent	preproduction	assets	for	the	

purposes	of	mirroring	the	production	environment	during	integration	testing

 Data	and	models	stored	in	the	staging	catalog	may	be	temporary,	or	cleaned	up	on	some	periodic	basis

 Limited	write	access	aside	from	that	of	administrators	and	service	principals

 Read	access	should	be	enabled	for	users	who	may	need	to	debug	integration	tests

prod	catalog

 Assets	that	have	been	produced	using	production-deployed	code

 We	can	inherently	assert	that	these	assets	have	been	produced	by	code	that	has	been	tested	prior	to	

deployment	to	the	production	environment

 Access	to	write	to	the	prod	catalog	is	typically	limited	to	a	small	number	of	administrators	or	service	

principals	

 Access	to	read	from	the	prod	catalog	can	be	granted	to	users	in	non-production	Databricks	workspaces

2 4BIG BOOK OF MLOPS - 2ND EDIT ION

Schema level
Within	each	catalog,	assets	are	further	categorized	into	schemas.	

 1 bronze:	Typically	raw	data,	which	is	unaltered	and	as	is	from	the	source

 2 silver:	Cleaned	or	processed	data,	often	transformed	from	raw	data	in	Bronze	

 3 gold:	Further	enriched	or	aggregated	data,	ready	for	analysis	or	model	training

TAB LES

Feature	tables:

				Tables	with	a	primary	key	used	to	train	models	and	serve	features

 Here	we	illustrate	how	generic	feature	tables	such	as	user	and	product	features	might	appear	

under	the	“Gold“	schema,	given	that	such	features	could	be	shared	across	multiple	use	cases

 4 fraud_detection:	Consolidated	schema	for	all	machine	learning	assets	relevant	to	the	fraud	

detection	use	case,	including	(but	not	limited	to):

MODELS

				Each	registered	model	typically	addresses	some	aspect	of	the	schema-specific	use	case	or	

project	(in	some	cases	there	may	be	multiple	models	per	use	case)

						In	our	example	we	illustrate	a	single	registered	model	for	the	fraud	detection	use	case,	called	

“fraud_clf”	(fraud	classifier)

				Every	time	a	new	MLflow	model	is	registered	to	a	given	model,	it	will	produce	a	new	incremental	

model	version

				Aliases	are	then	assigned	to	specific	model	versions	to	mark	them	for	deployment	and	to	manage	

rollouts	(e.g.,	“Champion,”	“Challenger”)

VOLU M ES

						Unstructured	data	(e.g.,	images,	text)	used	to	train	models	

2 5BIG BOOK OF MLOPS - 2ND EDIT ION

 TAB LES

Feature	tables:

						Feature	tables	created	specifically	for	the	fraud	detection	use	case

						In	the	above	example,	we	show	a	table	called	“offline_location_features”	in	development	under	

the	dev	catalog.	This	table	contains	historic	location-based	features	specific	to	the	fraud	detection	

use	case.

Inference	tables:

				Tables	containing	request-response	data	generated	by	Model	Serving

Metric	tables:

						Monitoring	tables	generated	by	Lakehouse	Monitoring

 FU N CTI ONS

				Python	UDFs	used	by	models	to	compute	features	on	demand	at	inference	time	

				In	our	example	we	illustrate	a	“compute_distance”	function	which	computes	real-time	

location-based	features	at	inference	time

				Note	that	functions	can	be	used	in	many	scenarios,	and	are	not	confined	to	just	

feature	computation	for	models

For	data	engineering,	we	present	a	medallion	architecture	mapping	to	bronze,	silver	and	gold	schemas.	

This	structure	provides	a	step-by-step	data	transformation	process,	ensuring	quality	and	consistency.	

While	this	naming	convention	is	useful	for	example	purposes,	conceptual	equivalents	are	often	termed	

differently	between	organizations.

2 6BIG BOOK OF MLOPS - 2ND EDIT ION

Model Serving
Incorporating	real-time	models	into	existing	MLOps	workflows	necessitates	a	new	set	of	considerations	one	

must	take	into	account.	Collecting	use	case	requirements	such	as	service	level	agreements	(SLAs)	from	

your	business	stakeholders	up	front	is	essential	in	order	to	appropriately	design	a	workflow	that	sufficiently	

tests	a	real-time	model	prior	to	deployment.	There	are	two	primary	ways	in	which	an	MLOps	workflow	

deploying	a	real-time	model	diverges	from	a	MLOps	workflow	deploying	batch	inference	pipelines:

 1 Pre-deployment testing

Ensuring	system	performance.	A	unique	requirement	for	deploying	real-time	models	is	ensuring	

that	model	serving	infrastructure	is	tested,	in	addition	to	regular	pre-deployment	testing	(e.g.,	

integration	tests).	

 2 Real-time model deployment

Ensuring	model	accuracy	(or	other	ML	performance	metrics).	Unlike	batch	inference	pipelines,	

real-time	models	often	require	a	paradigm	of	online	model	evaluation	to	ensure	that	the	most	

accurate	model	is	always	serving	predictions.	This	may	involve	updating	a	model	on	a	more	regular	

basis	based	on	newly	arriving	data.	As	a	result,	this	necessitates	a	different	approach	to	deployment.

2 7BIG BOOK OF MLOPS - 2ND EDIT ION

PRE-DEPLOYMENT TESTING

On	top	of	the	standard	unit	and	integration	tests	that	one	would	employ	in	a	typical	MLOps	workflow,	

performance	testing	model	serving	infrastructure	prior	to	deploying	a	real-time	model	is	required	in	

order	to	test	how	the	model	and	serving	infrastructure	handles	request	traffic.	Such	testing	could	include:

 Deployment readiness checks
These	checks	are	conducted	prior	to	creating	or	updating	a	Model	Serving	endpoint,	to	validate	that	

configuration	scripts	are	correctly	specified,	required	dependencies	are	present,	and	the	correct	

input	data	structure	is	defined,	etc.

 Load testing
Load	testing	involves	conducting	a	comprehensive	assessment	of	the	real-time	system’s	

performance,	stability	and	responsiveness	under	varying	degrees	of	demand.	The	following	are	all	

components	of	load	testing:

L ATE N CY

Ensure	the	model’s	inference	and	overall	system	response	times	meet	predefined	SLAs.	Metrics	

like	median	latency	and	long	tail	(95th	or	99th	percentile)	can	capture	both	typical	and	worst-

case	response	scenarios.

TH ROU G H PUT

Measure	the	application’s	capacity	to	handle	queries	over	time,	typically	gauged	in	queries	per	

second	(QPS).	Evaluations	should	consider	varying	load	conditions	to	discern	how	performance	

fluctuates	with	demand	shifts.

STAN DAR D LOAD E VALUATI O N

Analyze	system	behavior	under	expected	request	volumes,	scaling	from	regular	to	anticipated	

peak	levels.	This	not	only	gauges	throughput	but	also	examines	metrics	like	response	time	and	

error	rate.

STR ESS ASS ESS M E NT

Deliberately	overwhelm	the	system	to	observe	its	response	to	abnormally	high	demands,	

looking	for	graceful	failure	and	effective	recovery.

2 8BIG BOOK OF MLOPS - 2ND EDIT ION

REAL-TIME MODEL DEPLOYMENT

Given	a	newly	trained	(“Challenger”)	model	and	an	existing	(“Champion”)	model	in	production,	there	

are	a	variety	of	approaches	that	can	be	taken	for	real-time	deployments.	Some	common	deployment	

patterns	include:

 A/B testing

Deploy	multiple	model	versions	concurrently	and	distribute	the	traffic	among	them	to	test	and	

evaluate	their	performance.	Based	on	predefined	success	criteria,	such	as	accuracy	or	conversion	

rates,	the	best-performing	model	is	then	selected	to	handle	all	traffic.

R E L ATI O N TO OTH E R PAT TE R N S:	A/B	testing	usually	involves	splitting	traffic	evenly	or	in	some	

predefined	ratio	between	model	versions.	Unlike	gradual	rollouts,	where	traffic	is	incrementally	shifted	

based	on	performance	metrics,	A/B	testing	maintains	its	traffic	splits	until	a	decision	is	made.

 Gradual rollout

This	pattern	begins	by	exposing	a	new	model	version	to	a	small	selected	segment	of	request	traffic	

(sometimes	referred	to	as	a	canary	deployment).	Performance	is	closely	monitored.	If	the	new	version	

meets	defined	success	criteria,	traffic	to	this	model	version	is	gradually	increased.	This	allows	for	

the	benefits	of	continuous	exposure	to	real	traffic,	while	still	having	the	safety	net	of	scaling	back	if	

anomalies	arise.

R E L ATI O N TO OTH E R PAT TE R N S:	Unlike	A/B	testing,	where	traffic	is	set	to	predefined	ratios,	gradual	

rollout	adjusts	traffic	based	on	model	performance	metrics.	This	is	a	more	adaptive	and	responsive	

approach	compared	to	other	patterns.

 Shadow deployment

In	this	pattern,	a	new	model	version	runs	alongside	the	existing	version,	but	it	does	not	actively	

serve	traffic.	Instead,	the	new	version	receives	a	copy	of	the	incoming	traffic	and	generates	

predictions,	which	can	be	compared	to	the	current	version	for	evaluation	purposes	without	affecting	

the	user	experience.

R E L ATI O N TO OTH E R PAT TE R N S: Akin	to	a	silent	observer,	where	you	can	evaluate	a	new	model	version	

without	affecting	end	users.	This	offers	a	risk-free	comparison	unlike	a	gradual	rollout.	Note	that	this	

involves	performing	additional	work	as	multiple	predictions	are	generated	for	the	same	input.

Note: The deployment patterns are not

mutually exclusive. Organizations can, and

often do, combine multiple patterns to suit

requirements and risk profiles. For instance,

one could start with a shadow deployment

to evaluate a new model version without

impacting the user experience, and based on

findings, proceed with a gradual rollout.

2 9BIG BOOK OF MLOPS - 2ND EDIT ION

Implementing in Databricks

 M O D E L ALIAS ES

When	implementing	strategies	like	A/B	testing	or	canary	deployments,	use	model	aliases	to	identify	

and	manage	different	model	versions.	For	example,	using	aliases	you	can	easily	switch	traffic	

between	a	“Champion”	model	version	and	“Challenger”	model	version	without	needing	extensive	

reconfigurations.

 CO NTRO L E N D PO I NT TR AFFI C

Databricks	Model	Serving	provides	the	functionality	to	create	a	single	Model	Serving	endpoint	with	

two	models	and	split	endpoint	traffic	between	those	models.	For	instance,	during	A/B	testing,	you	

can	set	specific	traffic	percentages	for	each	model	version.	Similarly,	in	rolling	deployments,	adjust	

these	percentages	as	you	phase	in	the	new	model.

 L AKE H OU S E M O N ITO R I N G WITH M O D E L S E RVI N G

With	Lakehouse	Monitoring	you	can	set	up	monitoring	on	automatically	captured	inference	tables	

from	Model	Serving	endpoints.	As	such	we	can	capture	performance	metrics	of	different	model	

versions	exposed	to	traffic.	This	can	be	particularly	useful	for	any	of	the	deployment	patterns	

outlined	above,	where	you	need	to	closely	monitor	and	compare	predictions	between	different	

model	versions.

While	each	deployment	pattern	outlined	above	has	its	strengths,	the	pattern	you	choose	is	ultimately	

dependent	on	the	requirements	of	the	specific	use	case	and	organization.	With	Databricks	Model	

Serving,	such	patterns	can	be	implemented	easily,	streamlining	the	deployment	process	for	real-time	

ML	models.

3 0BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/serve-multiple-models-to-serving-endpoint.html
https://docs.databricks.com/en/machine-learning/model-serving/serve-multiple-models-to-serving-endpoint.html
https://docs.databricks.com/en/machine-learning/model-serving/inference-tables.html
https://docs.databricks.com/en/machine-learning/model-serving/inference-tables.html

CHAPTER 5

Reference
Architecture

In	the	reference	architecture	presented,	we	follow	a	deploy	code	workflow	and	assume	a	1:1	mapping	

between	environments	and	Unity	Catalog.	Hence,	there	are	dev,	staging	and	prod	catalogs	corresponding	

to	assets	produced	in	the	development,	staging	and	production	environments,	respectively.	In	this	context	

an	environment	is	the	equivalent	of	a	Databricks	workspace.

Within	each	catalog	we	have	the	ability	to	manage	both	data	and	models.	This	architecture	allows	assets	in	

the	prod	catalog	to	be	accessed	from	the	development	environment,	provided	appropriate	permissions	are	

granted.	Typically,	this	would	involve	granting	read-only	access	to	the	prod	catalog	from	the	development	

environment,	although	it’s	important	to	note	that	not	all	organizations	may	allow	this	level	of	accessibility.	

Given	this	access,	data	scientists	can	develop	ML	code	using	production	data	in	the	development	

environment,	where	write	access	is	restricted	to	only	the	dev	catalog.	Additionally,	data	scientists	working	

within	the	development	environment	can	load	current	production	models	residing	in	the	prod	catalog	to	

compare	against	newly	developed	models.	While	our	workflow	involves	registering	and	managing	models	

within	catalogs	in	Unity	Catalog,	each	Databricks	workspace	has	its	own	dedicated	MLflow	Tracking	server	

to	which	metrics,	parameters	and	model	artifacts	are	logged.

Note	that	environment	terminology	may	vary	across	organizations	and	even	teams.	We	present	an	

architecture	with	development,	staging	and	production	environments;	however,	conceptually	similar	

environments	may	have	different	naming	conventions	within	your	organization	(e.g.,	QA/testing/pre-prod	

environment	may	be	equivalent	to	staging).	

Furthermore,	just	as	environments	can	have	different	names,	the	branch	naming	and	management	

strategies	in	Git	can	also	vary.	The	Git	workflow	we	present	involves	a	dev	branch	merged	into	“main,”	and	

subsequently	the	main	branch	is	merged	into	a	“release”	branch.	However,	in	some	cases	teams	may	prefer	

working	on	“feature”	branches	corresponding	to	specific	features	or	tasks	in	places	of	the	dev	branch.	

Similarly,	the	creation	of	a	release	branch	might	not	always	be	necessary,	with	teams	using	tags	to	mark	a	

particular	commit	as	a	release	instead.

Thus,	both	environment	names	and	CI/CD	workflow	depicted	are	intended	to	be	used	as	guidance	rather	

than	to	be	prescriptive.	The	architecture	and	workflow	outlined	should	be	adapted	to	fit	the	unique	needs	

and	circumstances	of	your	team	and	project.

Note: While the model promotion logic presented

here is reliant on use of “Champion” and

“Challenger” aliases, this naming convention is

entirely adaptable. The flexibility of model	aliases	

in	Unity	Catalog enables you to attribute aliases

specific to your team’s needs and terminologies.

3 1BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/mlflow/models-in-uc.html#model-registry-concepts
https://docs.databricks.com/mlflow/models-in-uc.html#model-registry-concepts

Multi-environment view

3 2BIG BOOK OF MLOPS - 2ND EDIT ION

In	the	following	sections	we	provide	a	detailed	explanation	of	the	precise	steps	in	which	code	is	moved	

across	the	three	environments	illustrated	above.	At	a	high	level,	we	have	the	following	steps:

 1 Development:	ML	code	is	developed	in	the	development	environment,	with	code	pushed	to	a	dev	

(or	feature)	branch.

 2 Testing:	Upon	making	a	pull	request	from	the	dev	branch	to	the	main	branch,	a	CI	trigger	runs	unit	

tests	on	the	CI	runner	and	integration	tests	in	the	staging	environment.

 3 Merge code: After	successfully	passing	these	tests,	changes	are	merged	from	the	dev	branch	to	

the	main	branch.

 4 Release code: The	release	branch	is	cut	from	the	main	branch,	and	doing	so	deploys	the	project	

ML	pipelines	to	the	production	environment.

 5 Model training and validation: The	model	training	pipeline	ingests	data	from	the	prod	catalog.	

Upon	validating,	the	resulting	model	artifact	is	registered	to	the	prod	catalog.	A	“Challenger”	alias	

is	attached	to	the	newly	registered	model	version.	

 6 Model deployment: A	model	deployment	pipeline	evaluates	the	current	“Champion”	model	

versus	“Challenger”	model,	with	the	best-performing	model	version	taking	the	“Champion”	alias	

after	this	evaluation.

 7 Model inference:	Model	Serving	or	other	inference	pipelines	load	the	“Champion”	model	to	

compute	predictions.	Predictions	are	logged	to	inference	tables,	which	can	be	used	to	monitor	

the	“Champion”	model’s	performance.	

 8 Monitoring: Scheduled	or	continuous	pipeline	to	refresh	Lakehouse	Monitoring	metric	tables.	

Inference	tables	are	monitored	to	detect	data	or	model	drift.	Databricks	SQL	dashboards	are	

automatically	created	to	display	monitor	metrics.

3 3BIG BOOK OF MLOPS - 2ND EDIT ION

Development
Expanding	on	the	above,	we	start	by	looking	in	detail	at	the	development	environment.

3 4BIG BOOK OF MLOPS - 2ND EDIT ION

Data
To	support	their	development	activities,	data	scientists	will	have	read-write	access	to	the	dev	catalog.	

This	catalog	is	where	temporary	data	and	feature	tables	are	written	to	from	the	development	workspace.	

Additionally,	this	dev	catalog	is	used	to	register	any	models	created	during	code	development	to	

Unity	Catalog.	

Ideally,	data	scientists	working	within	the	development	workspace	will	possess	read-only	access	to	

production	data	in	the	prod	catalog.	This	facilitates	their	ability	to	read	production	tables,	as	well	as	load	

models	that	have	been	registered	to	the	prod	catalog.	In	cases	where	it	is	not	possible	to	grant	read-only	

access	to	the	prod	catalog,	a	snapshot	of	production	data	may	be	written	to	the	dev	catalog	to	enable	

data	scientists	to	develop	and	evaluate	their	project	code.

Note	that	read	access	to	inference	and	metric	tables	in	the	prod	catalog	will	enable	data	scientists	to	

examine	current	production	model	predictions	and	Lakehouse	monitoring	metrics.

Exploratory data analysis (EDA)
The	data	scientist’s	work	typically	begins	with	Exploratory	Data	Analysis	(EDA)	in	the	development	

environment.	This	is	an	interactive,	iterative	process	—	typically	conducted	in	notebooks	—	to	assess	

whether	the	available	data	has	the	potential	to	solve	the	business	problem	at	hand.	EDA	is	also	where	

the	data	scientist	will	begin	identifying	data	preparation	and	featurization	steps	for	later	model	

training.	This	ad	hoc	process	is	generally	not	part	of	a	pipeline	that	will	be	deployed	in	other	execution	

environments.	

Within	Databricks	this	EDA	process	can	be	accelerated	with	Databricks	AutoML.	AutoML	not	only	

generates	baseline	models	given	a	data	set,	but	also	provides	the	underlying	model	training	code	in	the	

form	of	a	Python	notebook.	Notably	for	EDA,	AutoML	calculates	summary	statistics	on	the	provided	data	

set,	creating	a	notebook	for	the	data	scientist	to	review	and	adapt.

3 5BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html#monitor-metric-tables
https://www.databricks.com/product/automl

Project code
This	code	repository	contains	all	the	pipelines,	modules	and	ancillary	project	files	involved	in	the	ML	solution.	

Development	(“dev”)	branches	are	used	to	develop	changes	to	existing	pipelines	or	create	new	ones.	

Even	during	EDA	and	initial	phases	of	a	project,	data	scientists	should	develop	within	a	repository	to	help	

with	tracking	changes	and	sharing	code.

Model training development
Data	scientists	develop	the	model	training	pipeline	in	the	development	environment	using	Lakehouse	tables	

from	the	dev	or	prod	catalogs.

 TR AI N I N G AN D TU N I N G

The	training	process	logs	model	parameters,	metrics	and	artifacts	to	the	MLflow	Tracking	server.	After	

training	and	tuning	hyperparameters,	the	final	model	artifact	is	logged	to	the	tracking	server	to	record	a	

robust	link	between	the	model,	its	input	data	and	the	code	used	to	generate	it.

 E VALUATI O N

Model	quality	is	evaluated	by	testing	on	held-out	data.	The	results	of	these	tests	are	logged	to	the	

MLflow	Tracking	server.	At	this	point	it	can	be	determined	if	a	newly	developed	model	outperforms	

that	of	the	current	model	in	production.	Given	sufficient	permissions,	any	production	model	registered	

to	the	prod	catalog	can	be	loaded	into	the	development	workspace	and	compared	against	a	newly	

trained	model.

If	governance	requires	additional	metrics	or	supplemental	documentation	about	the	model,	this	

is	the	time	to	add	that	functionality	to	the	code	using	MLflow	Tracking.	Model	interpretations	(e.g.,	

plots	produced	by	SHAP)	and	plain	text	descriptions	are	common,	but	defining	the	specifics	for	such	

governance	requires	input	from	business	stakeholders	or	a	data	governance	officer.

3 6BIG BOOK OF MLOPS - 2ND EDIT ION

https://shap.readthedocs.io/en/latest/index.html

 M O D E L TR AI N I N G OUTPUT

The	model	training	pipeline	produces	an	ML	model	artifact	stored	in	the	MLflow	Tracking	server.	At	this	

point	the	model	artifact	is	tracked	to	the	development	environment	MLflow	Tracking	server.	However,	

when	this	pipeline	is	executed	in	either	staging	or	production	workspaces,	the	model	is	tracked	to	the	

respective	MLflow	Tracking	servers	of	these	workspaces.	

Upon	model	training	completion,	the	model	is	registered	to	Unity	Catalog.	When	executed	in	the	

development	environment,	this	model	is	registered	to	the	dev	catalog.	Pipeline	code	is	typically	

parameterized	in	such	a	manner	that	the	model	will	be	registered	to	the	catalog	corresponding	to	

the	environment	the	model	training	pipeline	is	executed	in.

In	the	proposed	architecture,	we	deploy	a	multitask	Databricks	Workflow	in	which	the	first	task	is	

the	model	training	pipeline,	followed	by	subsequent	model	validation,	then	model	deployment	

tasks.	As	such,	the	model	training	task	will	yield	a	model	URI	(or	path)	which	can	be	used	by	the	

subsequent	model	validation	task.	This	model	URI	value	can	be	passed	into	subsequent	tasks	using	

the	taskValues	subutility	in	Databricks	Utilities.

Model validation and deployment development
In	addition	to	the	model	training	pipeline,	other	ancillary	pipelines	such	as	model	validation	and	model	

deployment	pipelines	are	developed	in	the	development	environment.	

 M O D E L VALI DATI O N

This	pipeline	will	take	the	model	URI	from	the	previous	model	training	pipeline,	load	the	model	from	

Unity	Catalog	and	apply	validation	checks.

The	scope	of	validation	checks	on	a	newly	trained	model	are	typically	context	dependent.	These	

checks	can	range	from	fundamental	checks	like	asserting	the	model	artifact’s	format	and	verifying	the	

presence	of	required	metadata	for	subsequent	deployment	and	inference	pipelines,	to	more	complex	

checks,	especially	in	highly	regulated	industries.	The	latter	may	involve	predefined	compliance	checks	

and	asserting	that	the	model	performance	meets	a	certain	threshold	on	selected	data	slices.

3 7BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/machine-learning/manage-model-lifecycle/index.html#train-and-register-unity-catalog-compatible-models
https://docs.databricks.com/workflows/index.html
https://docs.databricks.com/dev-tools/databricks-utils.html#dbutils-jobs-taskvalues
https://docs.databricks.com/en/mlflow/models-in-uc-example.html#load-model-versions-using-the-api
https://docs.databricks.com/en/mlflow/models-in-uc-example.html#load-model-versions-using-the-api

The	primary	function	of	this	model	validation	pipeline	is	to	determine	whether	a	model	should	

proceed	to	the	deployment	step	of	our	workflow.	If	the	model	passes	pre-deployment	checks,	we	

attach	a	“Challenger”	alias	to	the	registered	model	in	Unity	Catalog.	Conversely,	if	these	checks	fail,	

we	exit	the	process,	and	using	Workflows	can	alert	users	about	the	task	failure.		

 M O D E L D E PLOYM E NT

The	model	deployment	pipeline	typically	either	directly	promotes	the	newly	trained	“Challenger”	

model	to	“Champion”	status	using	an	alias	update,	or	facilitates	a	comparison	between	the	existing	

“Champion”	model	and	the	new	“Challenger”	model.	In	addition	to	this,	this	pipeline	might	also	be	

responsible	for	setting	up	any	required	inference	infrastructure,	such	as	Model	Serving	endpoints.

We	save	a	detailed	discussion	of	the	steps	involved	in	the	model	deployment	pipeline	for	the	

“Production”	section	below.

Commit code
After	developing	code	for	training,	validation,	deployment	and	other	ancillary	pipelines,	the	data	scientist	

or	ML	engineer	commits	the	dev	branch	changes	into	source	control.	

This	development	section	does	not	discuss	Model	Serving,	inference	or	monitoring	pipelines	in	detail;	see	

the	“Production”	section	below	for	more	information.

3 8BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/workflows/jobs/job-notifications.html
https://docs.databricks.com/machine-learning/model-serving/create-manage-serving-endpoints.html#create-and-manage-model-serving-endpoints

Staging
One	of	the	core	motivations	for	the	deploy	code	approach	presented	in	this	architecture	is	that	all	code	

can	be	robustly	tested	prior	to	deployment	in	the	production	environment.	The	transition	of	code	from	

development	to	production	occurs	via	the	staging	environment.	In	the	staging	environment,	all	pipelines	

intended	for	production	deployment	are	rigorously	tested.	While	both	data	scientists	and	ML	engineers	

share	responsibility	for	writing	tests	for	code	and	models,	ML	engineers	typically	manage	the	continuous	

integration	pipelines	and	orchestration	within	a	project.

3 9BIG BOOK OF MLOPS - 2ND EDIT ION

Data
The	staging	environment	should	have	its	own	catalog	in	Unity	Catalog	(the	“staging”	catalog	shown	in	

the	figure	above)	for	testing	ML	pipelines	and	registering	models	to	Unity	Catalog.	Assets	written	to	this	

catalog	are	generally	temporary	and	only	retained	long	enough	to	run	tests	and	to	investigate	test	

failures.	The	staging	catalog	can	be	made	readable	from	the	development	environment	for	debugging.		

Merge code
Data	scientists	develop	the	model	training	pipeline	in	the	development	environment	using	Lakehouse	

tables	from	the	dev	or	prod	catalogs.

 PU LL R EQU EST

The	deployment	process	begins	when	a	pull	request	is	created	against	the	main	branch	of	the	

project	in	source	control.	

 U N IT TESTS (CI)

The	pull	request	automatically	builds	source	code	and	triggers	unit	tests.	These	unit	tests	will	run	

on	the	runner	of	the	continuous	integration	platform	being	used.	If	unit	tests	fail,	the	pull	request	is	

rejected.

Note	that	unit	tests	are	part	of	the	software	development	process	and	are	continuously	executed	

and	added	to	the	codebase	during	the	development	of	any	code.	Running	unit	tests	as	part	of	a	

continuous	integration	pipeline	ensures	that	any	changes	or	additions	from	development	branches	

do	not	inadvertently	break	existing	functionality.

Integration tests (CI)
Upon	passing	the	unit	tests,	the	pull	request	undergoes	integration	tests.	These	tests	run	all	pipelines	

(in	a	limited	capacity)	to	confirm	that	they	function	correctly	together.	Pipelines	often	share	common	code	

functionality,	which	is	why	it	can	be	important	to	test	pipelines	collectively.	Integration	tests	are	executed	

in	the	staging	environment,	which	should	mimic	the	production	environment	as	much	as	is	reasonable.

4 0BIG BOOK OF MLOPS - 2ND EDIT ION

Additionally,	if	deploying	an	ML	application	with	real-time	inference,	Model	Serving	infrastructure	should	

be	created	and	tested	in	the	staging	environment.	This	involves	triggering	the	model	deployment	pipeline,	

which	creates	a	Model	Serving	endpoint	in	the	staging	environment,	loads	a	test	model	(e.g.,	a	model	

trained	on	a	limited	subset	of	data).	To	test	the	endpoint,	some	of	the	testing	approaches	mentioned	in	the	

Pre-deployment	testing	section	could	be	employed.

Integration	tests	can	trade	off	fidelity	of	testing	for	speed	and	cost.	For	example,	when	models	are	

expensive	to	train,	it	is	common	to	test	the	model	training	pipeline	on	small	data	sets	or	for	fewer	iterations	

to	reduce	cost.	When	models	are	deployed	behind	REST	APIs,	some	high-SLA	models	may	warrant	full-

scale	load	testing	within	these	integration	tests,	whereas	other	models	may	be	tested	with	small	batch	jobs	

or	a	few	requests	to	a	temporary	Model	Serving	endpoint.

Merge
If	all	tests	pass,	the	new	code	is	merged	into	the	main	branch	of	the	project.	If	tests	fail,	the	CI/CD	system	

should	notify	users	and	post	results	on	the	pull	request.

Note:	It	can	be	useful	to	schedule	periodic	integration	tests	on	the	main	branch,	especially	if	the	branch	is	

updated	frequently	with	concurrent	pull	requests.

Cut release branch
Once	CI	tests	have	passed	and	the	dev	branch	merged	into	the	main	branch,	ML	engineers	can	cut	a	

release	branch	from	that	commit.

4 1BIG BOOK OF MLOPS - 2ND EDIT ION

Production
The	production	environment	is	where	ML	pipelines	are	operationalized	and	start	directly	serving	the	

business	or	application.	Managed	by	select	ML	engineers	and	admins,	this	environment	is	where	the	

pipelines	of	the	ML	project	are	deployed	and	executed.	These	pipelines	trigger	model	training,	validate	and	

deploy	new	model	versions,	publish	predictions	to	downstream	tables	or	applications,	and	monitor	the	

entire	process	to	avoid	performance	degradation	and	instability.	While	we	illustrate	batch	and	streaming	

inference	alongside	real-time	model	serving	below,	it’s	worth	noting	that	most	ML	applications	typically	

only	use	one	of	these	methods,	based	on	business	needs.

Data	scientists	usually	do	not	have	write	or	compute	access	in	the	production	environment.	However,	it	is	

important	to	provide	them	with	visibility	to	test	results,	logs,	model	artifacts	and	the	status	of	ML	pipelines	

in	production.	This	visibility	allows	them	to	identify	and	diagnose	problems	in	production.	Data	scientists	

working	in	the	development	environment	can	be	granted	read	access	to	model	artifacts	and	monitoring	

tables	in	the	prod	catalog.	Furthermore,	this	allows	data	scientists	to	load	registered	models	from	the	prod	

catalog	to	compare	against	models	in	development.			

4 2BIG BOOK OF MLOPS - 2ND EDIT ION

4 3BIG BOOK OF MLOPS - 2ND EDIT ION

Model training
In	the	architecture	illustrated	above	we	deploy	a	Databricks	Workflow	consisting	of	three	tasks:	model	

training,	model	validation	and	model	deployment.	Once	deployed,	this	workflow	runs	either	when	code	

changes	affect	upstream	featurization	or	training	logic,	or	when	automated	retraining	is	scheduled	or	

triggered.	The	first	task	in	this	workflow,	the	model	training	task,	loads	tables	and/or	feature	tables	from	the	

prod	catalog	and	performs	the	following	steps:

 TR AI N I N G AN D TU N I N G

During	the	training	process,	logs	are	recorded	to	the	production	environment	MLflow	Tracking	server.

These	include	model	metrics,	parameters,	tags	and	the	model	itself.	If	using	feature	tables,	the	model	

will	be	logged	to	MLflow	using	the	Databricks	Feature	Store	client.	This	will	result	in	the	logged	model	

being	packaged	with	feature	lookup	information,	which	can	be	used	at	inference	time.

In	the	development	environment,	data	scientists	may	test	many	algorithms	and	hyperparameters,	but	

it	is	common	to	restrict	those	choices	to	the	top-performing	options	in	the	production	training	code.	

Restricting	tuning	can	reduce	the	variance	from	tuning	during	automated	retraining,	and	expedite	the	

training	and	tuning	process.	

Alternatively,	the	optimal	set	of	hyperparameters	for	a	model	may	be	determined	in	the	development	

environment	if	read-only	access	to	the	prod	catalog	is	available.	The	model	training	pipeline	deployed	

in	production	can	then	be	executed	using	this	selected	set	of	hyperparameters	using	a	configuration	

file	passed	into	the	pipeline.

4 4BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/workflows/index.html
https://docs.databricks.com/workflows/jobs/schedule-jobs.html
https://www.mlflow.org/docs/latest/tracking.html
https://api-docs.databricks.com/python/feature-store/latest/feature_store.client.html

 E VALUATI O N

Model	quality	is	evaluated	by	testing	on	held-out	production	data.	The	results	of	these	tests	are	logged	

to	the	MLflow	Tracking	server.	During	development,	data	scientists	select	meaningful	evaluation	metrics	

for	the	use	case,	and	those	metrics	or	their	custom	logic	are	used	in	this	step.

 R EG I STE R M O D E L

Upon	completion	of	model	training,	the	model	artifact	is	registered	to	the	prod	catalog.	The	model	

appears	as	a	newly	registered	model	version	under	the	model	path	in	Unity	Catalog.	Once	the	model	

training	pipeline	successfully	runs,	the	model	URI	of	the	newly	registered	model	in	Unity	Catalog	is	

yielded	as	a	task	value,	enabling	its	use	by	subsequent	tasks	in	the	workflow.

Model validation
As	outlined	in	the	“Development”	section	above,	the	model	validation	pipeline	uses	the	model	URI	from	

the	preceding	model	training	pipeline,	and	loads	the	model	from	Unity	Catalog.	The	model	artifact	then	

undergoes	a	series	of	validation	checks,	adjusted	to	fit	the	specific	context	of	the	use	case.	These	checks	

can	encompass	everything	from	basic	format	and	metadata	validations	through	to	performance	evaluations	

(e.g.,	performance	on	selected	data	slices)	and	compliance	checks	(for	tags,	documentation,	etc.).

If	the	model	successfully	passes	all	validation	checks,	the	“Challenger”	alias	is	assigned	to	the	model	version	

in	Unity	Catalog.	In	the	event	that	the	newly	trained	model	does	not	pass	all	validation	checks,	the	process	

will	exit	and	users	can	be	notified	on	failure	of	the	task	to	investigate	further.	Tags	can	be	used	to	add	key-

value	attributes	to	the	model	version	depending	on	the	outcome	of	these	validation	checks.	For	example,	

adding	a	tag	like	“model_validation_status”:	“PENDING”,	and	updating	the	value	to	“PASSED/FAILED”	following	

execution	of	the	model	validation	pipeline.

Note	that	since	the	model	is	registered	to	Unity	Catalog,	data	scientists	working	in	the	development	

environment	can	load	this	model	version	from	the	prod	catalog	to	investigate	further	in	the	event	of	model	

validation	failure.	Regardless	of	the	outcome,	results	are	recorded	to	the	registered	model	in	the	prod	

catalog	through	annotations	to	the	model	version.

Note: We describe a fully automated approach here,

consolidating the model validation task and subsequent

model deployment task into a single Databricks Workflow. In

some scenarios compliance checks require human expertise,

where human reviewers evaluate computed statistics or

visualizations from the model validation pipeline.

In such cases the model validation pipeline and model

deployment pipeline can be separated into different

Databricks Workflows. Upon successful completion of the

model validation task, users are notified and can then review

the pipeline’s output. Once a team member has approved

the model, a separate model deployment workflow can be

manually triggered to deploy the approved model.

Note that model aliases can be useful in these scenarios to

denote which models are currently deployed, offering further

flexibility to the model validation and deployment process.

4 5BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/machine-learning/manage-model-lifecycle/index.html#consume-model-versions-by-version-number-in-inference-workloads
https://docs.databricks.com/machine-learning/manage-model-lifecycle/index.html#mark-model-for-deployment-using-aliases
https://docs.databricks.com/machine-learning/manage-model-lifecycle/index.html#mark-model-for-deployment-using-aliases
https://docs.databricks.com/workflows/jobs/job-notifications.html#add-email-and-system-notifications-for-job-events
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html#deploy-and-organize-models-with-aliases-and-tags
https://docs.databricks.com/machine-learning/manage-model-lifecycle/index.html#annotate-a-model-or-model-version
https://docs.databricks.com/workflows/jobs/job-notifications.html

Model deployment
The	model	deployment	pipeline	is	executed	upon	completion	of	the	model	validation	pipeline.	At	this	

point,	the	newly	registered	model	having	passed	all	validation	checks	in	the	preceding	step	will	have	been	

assigned	the	“Challenger”	alias.	

Like	the	model	validation	pipeline,	the	functionality	of	the	model	deployment	pipeline	can	greatly	vary	

depending	on	the	context	of	the	use	case.	We	outline	an	approach	where	a	“Champion”	model	is	already	

in	use	in	production.	To	prevent	performance	degradation,	the	newly	trained	“Challenger”	model	must	be	

compared	against	the	“Champion”	model	it	aims	to	replace.	

 CO M PAR E “CHALLE N G E R ” VS . “CHAM PI O N ”

Comparing	a	new	“Challenger”	model	versus	an	existing	“Champion”	model	can	be	done	in	either	an	

offline	or	online	manner.	An	offline	comparison	would	evaluate	both	models	against	a	held-out	data	

set,	with	results	tracked	to	the	MLflow	Tracking	server.	

In	cases	involving	real-time	models,	it	is	often	necessary	to	perform	longer	running	online	

comparisons,	such	as	A/B	tests,	or	gradual	rollouts.	In	the	case	of	a	gradual	rollout,	for	example,	the	

deployment	process	is	inherently	iterative.	There	will	be	multiple	evaluations	and	traffic	adjustments	

as	the	model	version	is	gradually	rolled	out	to	all	the	traffic.	Once	the	model	version	is	exposed	to	full	

production	traffic,	the	“Champion”	alias	will	be	assigned	to	the	model	version.

As	alluded	to	in	the	real-time	model	deployment	design	decision	section,	Model	Serving	enables	you	

to	automatically	collect	inference	tables	containing	endpoint	request-response	data,	and	monitor	

these	tables	with	Lakehouse	Monitoring.	This	combined	functionality	enables	data	scientists	to	

actively	monitor	performance	of	a	new	model	version	before	exposing	it	to	all	live	traffic.	Alerts	can	be	

additionally	configured	to	notify	users	when	certain	performance	thresholds	are	achieved.	

4 6BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/inference-tables.html
https://docs.databricks.com/en/sql/user/alerts/index.html

Depending	on	the	outcome	of	the	model	comparison,	either	the	“Challenger”	model	version	will	have	

its	alias	updated	to	“Champion,”	or	the	existing	“Champion”	model	will	retain	its	alias.	

In	the	event	of	the	first	deployment,	where	there	is	no	existing	“Champion”	model,	the	“Challenger”	

model	should	be	compared	to	a	business	heuristic	or	other	threshold	as	a	baseline.

Although	we	describe	a	fully	automated	approach	here,	additional	manual	approval	steps	can	be	

incorporated	if	required,	facilitated	through	workflow	notifications	or	CI/CD	callbacks	from	the	model	

deployment	pipeline.	

 D E PLOY M O D E L

For	use	cases	involving	batch	or	streaming	inference,	simply	promoting	a	model	version	after	

validation	and	subsequent	comparison	checks	to	the	“Champion”	alias	is	sufficient	at	this	point.	

The	downstream	batch	or	streaming	inference	pipeline	will	then	pick	up	the	model	according	to	the	

“Champion”	alias,	and	use	this	model	to	compute	predictions.	

Real-time	use	cases	necessitate	an	additional	step	to	set	up	the	infrastructure	needed	to	expose	the	

model	as	a	REST	API	endpoint.	Databricks	greatly	simplifies	this	step	through	the	ability	to	create	and	

manage	a	Model	Serving	endpoint.	

In	our	proposed	architecture,	we	perform	the	comparison	between	“Challenger”	and	“Champion”	

models,	and	following	this,	update	an	existing	Model	Serving	endpoint	to	use	the	model	version	of	the	

“Champion”	model.	Thus,	the	“deploy	model”	step	in	our	model	deployment	pipeline	would	involve	

determining	the	model	version	of	the	“Champion”	model	and	updating	the	Model	Serving	endpoint	if	

the	“Challenger”	model	has	replaced	the	“Champion”	model.	When	updating	an	endpoint,	Databricks	

performs	a	zero-downtime	update	by	keeping	the	existing	endpoint	configuration	up	until	the	new	one	

becomes	ready.	Doing	so	reduces	risk	of	interruption	for	endpoints	that	are	in	use.

In	the	event	that	there	is	not	an	existing	endpoint,	this	step	will	involve	the	creation	of	a	new	Model	

Serving	endpoint,	configured	to	use	the	model	version	of	the	“Champion”	model.

4 7BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/machine-learning/model-serving/index.html#model-serving-with-databricks
https://docs.databricks.com/machine-learning/model-serving/create-manage-serving-endpoints.html#modify-the-compute-configuration-of-an-endpoint

Model Serving
When	configuring	a	Model	Serving	endpoint,	the	name	of	the	model	in	Unity	Catalog	will	be	specified,	along	

with	the	model	version	to	serve	—	in	this	case	the	model	version	of	the	“Champion”	model.	If	the	model	

version	was	trained	using	features	from	Unity	Catalog,	the	model	stores	the	dependencies	to	features	

and	functions	used.	Model	Serving	will	automatically	use	this	dependency	graph	to	look	up	features	from	

appropriate	online	stores	at	inference	time.	Additionally,	this	approach	can	be	used	to	apply	functions	to	

perform	preprocessing	on	data,	or	compute	on-demand	features	before	scoring	the	model.

Notably,	it	is	possible	to	create	a	single	endpoint	with	multiple	models	and	specify	the	endpoint	traffic	

split	between	those	models.	This	functionality	can	be	used	to	conduct	the	longer	running	online	

“Champion”	versus	“Challenger”	comparison	outlined	above.

For	monitoring	endpoint	health,	it	is	also	possible	to	combine	Model	Serving	with	external	monitoring	tools

such	as	Prometheus	or	Datadog.

Inference: batch or streaming
The	inference	pipeline	is	responsible	for	reading	the	latest	data	in	the	prod	catalog,	executing	functions	

to	compute	on-demand	features,	loading	the	“Champion”	model,	performing	inference,	and	publishing	

predictions.	For	higher	throughput,	higher-latency	use	cases,	batch	or	streaming	inference	is	generally	

the	most	cost-effective	option.	Additionally,	in	scenarios	where	low-latency	predictions	are	required,	but	

predictions	can	be	computed	in	an	offline	manner,	these	batch	predictions	can	be	published	to	an	online	

key-value	store	such	as	DynamoDB	or	Cosmos	DB.

For	this	pipeline	we	reference	a	registered	model	in	Unity	Catalog	by	its	alias.	As	such,	we	specify	the	

inference	pipeline	to	load	and	apply	the	“Champion”	model	version	for	batch	or	streaming	inference.	If	the	

“Champion”	version	is	updated	to	reference	a	new	model	version,	the	inference	workload	automatically	

picks	it	up	on	its	next	execution.	Thus,	the	model	deployment	step	is	decoupled	from	inference	pipelines.

A	batch	job	would	likely	publish	predictions	to	tables	in	the	prod	catalog,	over	a	JDBC	connection,	or	to	flat	

files.	A	streaming	job	would	likely	publish	predictions	either	to	Unity	Catalog	tables	or	to	message	queues	

like	Apache	Kafka®.

4 8BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/machine-learning/model-serving/serve-multiple-models-to-serving-endpoint.html
https://docs.databricks.com/machine-learning/model-serving/metrics-export-serving-endpoint.html#monitor-model-serving-endpoints-with-prometheus-and-datadog
https://docs.databricks.com/mlflow/models-in-uc-example.html#load-model-versions-using-the-api

Lakehouse Monitoring
Lakehouse	Monitoring	monitors	statistical	properties	(data	drift,	model	performance,	etc.)	of	input	data	

and	model	predictions.	These	metrics	are	published	for	dashboards	and	alerts.

 DATA I N G ESTI O N

This	pipeline	reads	in	logs	from	batch,	streaming	or	online	inference.

 C H EC K AC C U R ACY A N D DATA D R I F T

The	pipeline	then	computes	metrics	about	the	input	data,	the	model’s	predictions	and	the	

infrastructure	performance.	Metrics	that	measure	statistical	properties	are	generally	chosen	by	

data	scientists	during	development,	whereas	metrics	for	infrastructure	are	generally	chosen	by	ML	

engineers.	Note	that	custom	metrics	can	be	defined	and	monitored	with	Lakehouse	Monitoring.		

 PU B LI S H M ETR I CS AN D S ET U P ALE RTS

The	pipeline	writes	to	Lakehouse	tables	in	the	prod	catalog	for	analysis	and	reporting.	These	tables	

should	be	readable	into	the	development	environment	to	allow	data	scientists	to	perform	granular	

analysis	if	required.	Tools	such	as	Databricks	SQL	are	used	to	produce	monitoring	dashboards,	

allowing	for	health	checks	and	diagnostics.	The	monitoring	job	or	the	dashboarding	tool	issues	

notifications	when	health	metrics	surpass	defined	thresholds.

 TR I G G E R M O D E L TR AI N I N G

When	the	model	monitoring	metrics	indicate	performance	issues,	or	when	a	model	inevitably	

becomes	out	of	date,	the	data	scientist	may	need	to	return	to	the	development	environment	and	

develop	a	new	model	version.	SQL	alerts	can	be	used	to	notify	data	scientists	when	this	happens.

Retraining
This	architecture	supports	automatic	retraining	using	the	same	model	training	pipeline	above.	While	we	

recommend	beginning	with	a	simple	schedule	for	periodic	retraining,	organizations	can	add	triggered	

retraining	when	needed.

4 9BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/lakehouse-monitoring/index.html
https://docs.databricks.com/en/lakehouse-monitoring/custom-metrics.html
https://www.databricks.com/product/databricks-sql
https://docs.databricks.com/en/sql/user/alerts/index.html

 SCH E D U LE D

If	fresh	data	are	regularly	made	available,	rerunning	model	training	on	a	defined	schedule	can	help	

models	to	keep	up	with	changing	trends	and	behavior.

 TR I G G E R E D

If	the	monitoring	pipeline	can	identify	model	performance	issues	and	send	alerts,	it	can	additionally	

trigger	retraining.	For	example,	if	the	distribution	of	incoming	data	changes	significantly	or	if	the	

model	performance	degrades,	automatic	retraining	and	redeployment	can	boost	model	performance	

with	minimal	human	intervention.	This	can	be	achieved	through	a	SQL	alert	to	check	whether	a	metric	

is	anomalous	(e.g.,	check	drift	or	model	quality	against	a	threshold).	The	alert	can	be	configured	to	

use	a	webhook	destination,	which	can	subsequently	trigger	the	training	workflow.

When	the	retraining	pipeline	or	other	ancillary	pipelines	themselves	begin	to	exhibit	performance	issues,	

the	data	scientist	may	need	to	return	to	the	development	environment	and	resume	experimentation	to	

address	such	issues.

Implementing MLOps on Databricks
MLOps	Stack	provides	a	means	of	accelerating	the	creation	of	an	MLOps	workflow	similar	to	the	one	

outlined	in	the	reference	architecture	section	above.	This	repository	provides	a	customizable	stack	for	

starting	new	ML	projects	on	Databricks.	After	instantiating,	a	new	project	will	have	CI/CD	pipelines	and	a	

number	of	example	ML	pipelines	such	as	a	model	training	pipeline,	model	deployment	pipeline	and	batch	

inference	pipeline,	among	others.	

These	pipelines	are	deployed	to	specified	Databricks	workspaces	as	Databricks	Workflows	using	the	

Databricks	CLI	with	Databricks	asset	bundles.	Databricks	asset	bundles	in	particular	enable	the	ability	to	

programmatically	validate,	deploy	and	run	Databricks	Workflows	such	as	Databricks	jobs,	and	Delta	Live	

Tables.	Additionally	it	provides	the	ability	to	manage	MLflow	resources	within	Databricks	such	as	MLflow	

experiments	and	MLflow	models.

Note: While automated retraining is supported in this

architecture, it isn’t required, and caution must be

taken in cases where it is implemented. It is inherently

difficult to automate selecting the correct action to

take from model monitoring alerts. For example, if

data drift is observed, does it indicate that we should

automatically retrain, or does it indicate that we should

engineer additional features to encode some new

signal in the data?

5 0BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/administration-guide/workspace/settings/notification-destinations.html
https://docs.databricks.com/en/administration-guide/workspace/settings/notification-destinations.html
https://github.com/databricks/mlops-stack
https://docs.databricks.com/en/workflows/index.html
https://docs.databricks.com/en/dev-tools/cli/databricks-cli-ref.html
https://docs.databricks.com/en/dev-tools/bundles/index.html
https://docs.databricks.com/en/workflows/index.html#what-is-databricks-jobs
https://docs.databricks.com/en/workflows/index.html#what-is-delta-live-tables
https://docs.databricks.com/en/workflows/index.html#what-is-delta-live-tables

With	the	recent	rise	of	Generative	AI	we	are	prompted	to	consider	how	MLOps	processes	should	be	

adapted	to	this	new	class	of	AI-powered	applications.	In	this	section	we	focus	on	the	productionization	of	

large	language	models	(LLMs),	the	most	prevalent	form	of	Generative	AI.

LLMs	have	splashed	into	the	mainstream	of	business	and	news,	and	there	is	no	doubt	that	they	will	

continue	to	disrupt	countless	industries.	In	addition	to	bringing	great	potential,	they	present	a	new	set	of	

questions	for	MLOps:

 Is	prompt	engineering	part	of	operations,	and	if	so,	what	is	needed?

 Since	the	“large”	in	“LLM”	is	an	understatement,	how	do	cost/performance	trade-offs	change?

 Is	it	better	to	use	paid	APIs	or	to	fine-tune	one’s	own	model?

 …and	many	more!

The	good	news	is	that	“LLMOps”	(MLOps	for	LLMs)	is	not	that	different	from	traditional	MLOps.	

However,	some	parts	of	your	MLOps	platform	and	process	may	require	changes,	and	your	team	will	need	

to	learn	a	mental	model	of	how	LLMs	coexist	alongside	traditional	ML	in	your	operations.

In	this	section,	we	will	explore	how	MLOps	changes	with	the	introduction	of	LLMs.	We	will	discuss	

several	key	topics	in	detail,	from	prompt	engineering	and	fine-tuning,	to	packaging	and	cost/performance	

trade-offs.	We	also	provide	a	reference	architecture	diagram	to	illustrate	what	may	change	in	your	

production	environment.

What changes with LLMs?
For	those	not	familiar	with	large	language	models	(LLMs),	see	this	summary	for	a	quick	introduction.	In	

short,	LLMs	are	a	new	class	of	natural	language	processing	(NLP)	models	that	have	significantly	surpassed	

their	predecessors	in	size	and	performance	across	a	variety	of	tasks,	such	as	open-ended	question	

answering,	summarization	and	execution	of	near-arbitrary	instructions.

From	the	perspective	of	MLOps,	LLMs	bring	new	requirements,	with	implications	for	MLOps	practices	and	

platforms.	We	briefly	summarize	key	properties	of	LLMs	and	the	implications	for	MLOps	here,	and	we	will	

delve	into	more	detail	in	the	next	section.

CHAPTER 6

LLMOps

5 1BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.databricks.com/product/machine-learning/large-language-models

KEY PROPERTIES OF LLMS IMPLICATIONS FOR MLOPS

LLMs	are	available	in	many	forms:

 Very	general	proprietary	models	behind	paid	APIs

 Open	source	models	that	vary	from	general	to	specific	
applications

 Custom	models	fine-tuned	for	specific	applications

Development process:	Projects	often	develop	incrementally,	starting	from	existing,	third-party	or	open	source	models	and	ending	
with	custom	fine-tuned	models.

Many	LLMs	take	general	natural	language	queries	and	instruc-
tions	as	input.	Those	queries	can	contain	carefully	engineered	
“prompts”	to	elicit	the	desired	responses.

Development process:	Designing	text	templates	for	querying	LLMs	is	often	an	important	part	of	developing	new	LLM	pipelines.

Packaging ML artifacts:	Many	LLM	pipelines	will	use	existing	LLMs	or	LLM	serving	endpoints;	the	ML	logic	developed	for	those	
pipelines	may	focus	on	prompt	templates,	agents	or	“chains”	instead	of	the	model	itself.	The	ML	artifacts	packaged	and	promoted	to	
production	may	frequently	be	these	pipelines,	rather	than	models.

Many	LLMs	can	be	given	prompts	with	examples	and	context,	
or	additional	information	to	help	answer	the	query.

Serving infrastructure:	When	augmenting	LLM	queries	with	context,	it	is	valuable	to	use	previously	uncommon	tooling	such	as	
vector	databases	to	search	for	relevant	context.

LLMs	are	very	large	deep	learning	models,	often	ranging	from	
gigabytes	to	hundreds	of	gigabytes.

Serving infrastructure:	Many	LLMs	may	require	GPUs	for	real-time	model	serving.

Cost/performance trade-offs:	Since	larger	models	require	more	computation	and	are	thus	more	expensive	to	serve,	techniques	for	
reducing	model	size	and	computation	may	be	required.

LLMs	are	hard	to	evaluate	via	traditional	ML	metrics	since	there	
is	often	no	single	“right”	answer.

Human feedback:	Since	human	feedback	is	essential	for	evaluating	and	testing	LLMs,	it	must	be	incorporated	more	directly	into	the	
MLOps	process,	both	for	testing	and	monitoring	and	for	future	fine-tuning.

5 2BIG BOOK OF MLOPS - 2ND EDIT ION

The	list	above	may	look	long,	but	as	we	will	see	in	the	next	section,	many	existing	tools	and	processes	

only	require	small	adjustments	in	order	to	adapt	to	these	new	requirements.	Moreover,	many	aspects	do	

not	change:

 The	separation	of	development,	staging	and	production	remains	the	same.

 Git	version	control	and	the	MLflow	Model	Registry	in	Unity	Catalog	remain	the	primary	

conduits	for	promoting	pipelines	and	models	toward	production.

 The	Lakehouse	architecture	for	managing	data	remains	valid	and	essential	for	efficiency.

 Existing	CI/CD	infrastructure	should	not	require	changes.

 The	modular	structure	of	MLOps	remains	the	same,	with	pipelines	for	model	training,	

model	inference,	etc.

5 3BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/mlflow/models-in-uc.html

Key components of LLM-powered applications
In	the	following	section	we	will	delve	into	the	more	detailed	aspects	of	building	AI-powered	applications	

using	LLMs.	The	field	of	LLMOps	is	quickly	evolving,	however	the	following	have	emerged	as	key	components	

and	considerations	to	bear	in	mind.	Some,	but	not	necessarily	all	of	the	following	components	make	up	a	

single	LLM-based	application.	

Prompt engineering
Prompt	engineering	is	the	practice	of	adjusting	the	text	prompts	given	to	an	LLM	to	elicit	more	accurate	or	

relevant	responses.	While	it’s	a	nascent	field,	several	best	practices	are	emerging.	We	will	discuss	tips	and	

best	practices	and	link	to	useful	resources.

 1 Prompts	and	prompt	engineering	are	model-specific.	A	prompt	given	to	two	different	models	will	

generally	not	produce	the	same	results.	Similarly,	prompt	engineering	tips	do	not	apply	to	all	models.	

In	extreme	cases,	many	LLMs	have	been	fine-tuned	for	specific	NLP	tasks	and	do	not	require	

prompts.	On	the	other	hand,	very	general	LLMs	benefit	greatly	from	carefully	crafted	prompts.

 2 When	approaching	prompt	engineering,	go	from	simple	to	complex:	track,	templatize	and	automate.

			Start	by	tracking	queries	and	responses	so	that	you	can	compare	them	and	iterate	to	improve	

prompts.	Existing	tools	such	as	MLflow	provide	tracking	capabilities;	see	MLflow	LLM	Tracking	for	

more	details.	Checking	structured	LLM	pipeline	code	into	version	control	also	helps	with	prompt	

development,	for	git	diffs	allow	you	to	review	changes	to	prompts	over	time.	Also	see	the	section	

below	on	packaging	model	and	pipelines	for	more	information	about	tracking	prompt	versions.

			Then,	consider	using	tools	for	building	prompt	templates,	especially	if	your	prompts	become	

complex.	Newer	LLM-specific	tools	such	as	LangChain	and	LlamaIndex	provide	such	templates	

and	more.

			Finally,	consider	automating	prompt	engineering	by	replacing	manual	engineering	with	

automated	tuning.	Prompt	tuning	turns	prompt	development	into	a	data-driven	process	akin	to	

hyperparameter	tuning	for	traditional	ML.	The	DSPy	framework	is	a	good	example	of	a	tool	for	both	

defining	and	automatically	optimizing	LLM	pipelines.

5 4BIG BOOK OF MLOPS - 2ND EDIT ION

https://mlflow.org/docs/latest/llm-tracking.html
https://python.langchain.com/en/latest/index.html
https://gpt-index.readthedocs.io/en/latest/
https://github.com/stanfordnlp/dsp

 3 Most	prompt	engineering	tips	currently	published	online	are	for	ChatGPT,	due	to	its	immense	

popularity.	Some	of	these	generalize	to	other	models	as	well.	We	will	provide	a	few	tips	here:

			Use	clear,	concise	prompts,	which	may	include	an	instruction,	context	(if	needed),	a	user	query	or	

input,	and	a	description	of	the	desired	output	type	or	format.

			Provide	examples	in	your	prompt	(“few-shot	learning”)	to	help	the	LLM	to	understand	what	you	

want.

			Tell	the	model	how	to	behave,	such	as	telling	it	to	admit	if	it	cannot	answer	a	question.

			Tell	the	model	to	think	step-by-step	or	explain	its	reasoning.

			f	your	prompt	includes	user	input,	use	techniques	to	prevent	prompt	hacking,	such	as	making	it	

very	clear	which	parts	of	the	prompt	correspond	to	your	instruction	vs.	user	input.

There	are	lots	of	good	resources	about	
prompt	engineering,	especially	for	popular	
models	and	services:

 DeepLearning.AI	course	on	ChatGPT

Prompt Engineering

 DAIR.AI	Prompt Engineering Guide

 Best practices for prompt engineering

with the OpenAI API

 Replicate	blog	post	-	A guide to

prompting Llama 2

Resources

5 5BIG BOOK OF MLOPS - 2ND EDIT ION

https://github.com/ray-project/llm-numbers#40-901-amount-saved-by-appending-be-concise-to-your-prompt
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.promptingguide.ai/
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://replicate.com/blog/how-to-prompt-llama
https://replicate.com/blog/how-to-prompt-llama

Leveraging your own data
While	prompt	engineering	can	yield	remarkable	results,	it	might	not	always	suffice,	especially	in	

circumstances	where	domain-specific	knowledge	is	required,	or	where	contextual	data	is	frequently	

updated.	Incorporating	your	own	data	in	LLM-powered	applications	can	not	only	enhance	a	model’s	

performance,	but	may	also	provide	a	strategic	edge	through	customizing	a	model’s	output	to	your	

specific	domain	or	use	case	requirements.	Leveraging	proprietary	data	can	be	the	key	differentiator	in	

achieving	superior	results	and	gaining	a	competitive	advantage.

We	provide	a	high	level	overview	of	the	various	approaches	that	can	be	taken	to	leverage	your	own	data	

with	LLMs,	and	explore	broadly	when	they	should	be	used.	In	subsequent	sections	we	will	unpack	these	

approaches	in	more	detail.

Method Definition Primary use case Data require-
ments Training time Advantage Considerations

Prompt
engineering

Crafting specialized
prompts to guide
LLM behavior

Quick, on-the-fly
model guidance

None None Fast, cost-effective,
no training required

Less control than
fine-tuning

Retrieval
augmented
generation (RAG)

Combining an
LLM with external
knowledge retrieval

Dynamic datasets &
external knowledge

External knowledge
base or database
(e.g. vector database)

Moderate
(e.g. computing
embeddings)

Dynamically
updated context,
enhanced accuracy

Significantly increases
prompt length and
inference computation

Fine-tuning

Adapting a
pre-trained LLM
to specific datasets
or domains

Domain or task
specialization

Thousands of
domain-specific or
instruction examples

Moderate — long
(depending on
data size)

Granular control,
high specialization

Requires labeled data,
computational cost

Pre-training

Training an LLM
from scratch

Unique tasks or
domain-specific
corpora

Large datasets
(billions to trillions
of tokens

Long (days to
many weeks)

Maximum control,
tailored for specific
needs

Extremely
resource-intensive

5 6BIG BOOK OF MLOPS - 2ND EDIT ION

Note	that	the	techniques	outlined	above	are	not	mutually	exclusive	of	one	another.	Rather,	they	can	(and	

should)	be	combined	to	take	advantage	of	the	strengths	of	each.	For	instance,	while	you	might	fine-tune	

a	model	for	a	specific	task,	you	can	also	employ	prompt	engineering	to	guide	its	response	at	inference	

time.	Similarly,	a	pre-trained	LLM	can	be	further	enhanced	with	RAG	to	dynamically	fetch	and	incorporate	

external	knowledge.

When	considering	which	approach	to	take,	like	any	ML	application,	it’s	crucial	to	assess	your	specific	

needs,	business	objectives,	and	constraints.	A	good	rule	of	thumb	is	to	start	with	the	simplest	approach	

possible,	such	as	prompt	engineering	with	a	third-party	LLM	API,	to	establish	a	baseline.	Once	this	

baseline	is	in	place,	you	can	incrementally	integrate	more	sophisticated	strategies	like	RAG	or	fine-tuning	

to	refine	and	optimize	performance.	Using	standard	MLOps	tools	such	as	MLflow	is	equally	crucial	in	LLM	

applications	to	track	performance	over	different	approach	iterations.	

			The	choice	of	technique	will	be	informed	by	a	range	of	factors,	including	(but	not	limited	to):

			The	volume	and	quality	of	your	data

			Required	application	response	time

			Computational	resources	available

			Budgetary	constraints

			The	specific	domain	or	application	at	hand

Regardless	of	the	technique	selected,	building	a	solution	in	a	well-structured,	modularized	manner	

will	ensure	that	you	will	be	prepared	to	iterate	and	adapt	as	you	uncover	new	insights	and	challenges.	

In	the	following	sections	we	will	look	at	each	of	these	techniques	to	leverage	your	data,	outlining	the	

considerations	and	best	practices	associated	with	each.

Prompt	engineering Retrieval	augmented	
generation	(RAG)

Fine-tuning Pre-train	
from	scratch

Complexity/Compute-intensiveness

5 7BIG BOOK OF MLOPS - 2ND EDIT ION

https://mlflow.org/docs/latest/llm-tracking.html

Retrieval augmented generation (RAG)
Retrieval	augmented	generation	(RAG)	offers	a	dynamic	solution	to	a	fundamental	limitation	of	LLMs:	their	

inability	to	access	information	beyond	their	training	data	cut-off	point.	RAG	connects	static	LLMs	with	

real-time	data	retrieval.	Instead	of	relying	solely	on	pre-trained	knowledge,	a	RAG	workflow	pulls	relevant	

information	from	external	sources	and	injects	it	into	the	context	provided	to	a	model.	RAG	workflows	are	

often	used	in	document	question-answering	use	cases	where	the	answer	might	evolve	over	time,	or	come	

from	up-to-date,	domain-specific	documents	that	were	not	part	of	the	mode’s	original	training	data.

RAG	provides	a	number	of	key	benefits:

 LLMs as reasoning engines:	RAG	ensures	that	model	responses	are	not	just	based	on	static	training	

data.	Rather,	the	model	is	used	as	a	reasoning	engine	augmented	with	external	data	sources	to	

provide	responses	that	are	up-to-date,	accurate	and	relevant.

 Reduce hallucinations:	By	grounding	the	model’s	input	on	external	knowledge,	RAG	attempts	to	

mitigate	the	risk	of	producing	“hallucinations”	—	instances	where	the	model	might	generate	inaccurate	

or	fabricated	information.

 Domain-specific contextualization:	A	RAG	workflow	can	be	tailored	to	interface	with	proprietary	or	

domain-specific	data.	This	ensures	that	the	LLM’s	outputs	are	not	only	accurate	but	also	contextually	

relevant,	catering	to	specialized	queries	or	domain-specific	needs.

 Efficiency and cost-effectiveness: In	use	cases	where	the	aim	is	to	create	a	solution	adapted	to	

domain-specific	knowledge,	RAG	offers	an	alternative	to fine-tuning	LLMs (discussed	below)	by	

enabling	in-context	learning	without	the	overhead	associated	with	traditional	fine-tuning.	This	can	

be	particularly	beneficial	in	scenarios	where	models	need	to	be	frequently	updated	with	new	data.	

Note	that	where	RAG	reduces	development	time	and	cost,	fine-tuning	by	contrast	reduces	inference	

time	and	cost.

5 8BIG BOOK OF MLOPS - 2ND EDIT ION

https://arxiv.org/abs/2005.11401
https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)

TYPICAL RAG WORKFLOW

There	are	many	ways	to	implement	a	RAG	system,	depending	on	specific	needs	and	data	nuances.	

Below	we	outline	one	commonly	adopted	workflow	to	provide	a	foundational	understanding	of	the	process.

 User prompt

The	process	begins	with	a	user	query	or	prompt.	This	input	serves	as	the	foundation	for	what	

the	RAG	system	aims	to	retrieve.

 Embedding conversion

The	user’s	prompt	is	transformed	into	a	high-dimensional	vector	(or	embedding).	This	representation	

captures	the	semantic	essence	of	the	prompt	and	is	used	to	search	for	relevant	information	in	the	

database.

 Information retrieval

Using	the	prompt’s	vector	representation,	RAG	queries	the	external	data	sources	or	databases.	

A	vector	database	(see	below)	can	be	particularly	effective	here,	allowing	for	efficient	and	accurate	

data	fetching	based	on	similarity	measures.

 Context augmentation

The	most	relevant	pieces	of	information	are	retrieved	and	concatenated	to	the	initial	prompt.	

This	enriched	context	provides	the	LLM	with	supplemental	information	which	can	be	used	to	produce	

a	more	informed	response.	

Source:	Databricks	-	Large	Language	Models:	Application	through	Production

Vector
database/libraryLanguage	Model Language	Model

Prompt	converted	to	
embedding Context-augmented	prompt

Generates	
output

Semantic	search	retrieves	
most	similar	docs

What	is	the...User submits
query or prompt

User receives
output

0.2 0.7 0.9 ... What	is	the... Retrieved	docs

5 9BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.edx.org/learn/computer-science/databricks-large-language-models-application-through-production

 Response Generation

With	the	augmented	context,	the	language	model	processes	the	combined	data	(original	prompt	+	

retrieved	information)	and	generates	a	contextually	relevant	response.

 Feedback Loop

Some	RAG	implementations	might	encompass	a	multi-hop	feedback	mechanism	(see	the	

following	paper	for	an	example).	In	cases	where	the	response	is	deemed	unsatisfactory,	the	system	

can	revisit	its	search	criteria,	tweak	the	context,	or	even	refine	its	retrieval	strategy,	subsequently	

generating	a	new	answer.

Vector Database
Retrieval	augmented	generation	(RAG)	hinges	on	the	efficient	retrieval	of	relevant	data.	At	the	heart	of	this	

retrieval	process	are	embeddings	—	numerical	representations	of	text	data.	To	understand	how	RAG	utilizes	

these	vectors,	let’s	first	distinguish	between	a	number	of	terms.	

Vector index

A	specialized	data	structure	optimized	to	facilitate	similarity	search	within	a	collection	of	vector	embeddings.	

Vector library

A	tool	to	manage	vector	embeddings	and	conduct	similarity	searches.	They	predominantly:

		Operate	on	in-memory	indexes.

		Focus	solely	on	vector	embeddings,	often	requiring	a	secondary	storage	mechanism	for	the	actual	data	

objects.

		Are	typically	immutable;	post-index	creation	changes	necessitate	a	complete	rebuild	of	the	index.

Examples	of	vector	libraries	include	FAISS,	Annoy,	and	ScaNN.

 Databricks	— Using MLflow AI Gateway
and Llama 2 to Build Generative AI Apps

 LangChain question-answer example

 Eugene	Yan	—	Patterns for Building
LLM-based Systems & Products

Resources

6 0BIG BOOK OF MLOPS - 2ND EDIT ION

https://arxiv.org/abs/2212.14024
https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy
https://github.com/google-research/google-research/tree/master/scann
https://www.databricks.com/blog/using-ai-gateway-llama2-rag-apps
https://www.databricks.com/blog/using-ai-gateway-llama2-rag-apps
https://python.langchain.com/docs/use_cases/question_answering/how_to/vector_db_qa
https://eugeneyan.com/writing/llm-patterns/#retrieval-augmented-generation-to-add-knowledge
https://eugeneyan.com/writing/llm-patterns/#retrieval-augmented-generation-to-add-knowledge

Vector database

Distinguished	from	vector	libraries,	vector	databases:

		Store	both	the	vector	embeddings	and	the	actual	data	objects,	permitting	combined	vector	searches	

with	advanced	filtering.

		Offer	full	CRUD	(create,	read,	update,	delete)	operations,	allowing	dynamic	adjustments	without	

rebuilding	the	entire	index.

		Are	generally	better	suited	for	production-grade	deployments	due	to	their	robustness	and	flexibility.

Examples	of	vector	databases	include	Chroma,	and	Milvus.

In	the	RAG	workflow	described	in	the	previous	section	we	assume	that	the	retrieved	external	data	has	

been	converted	into	embeddings.	These	embeddings	are	stored	in	a	vector	index,	managed	either	through	

a	vector	library,	or	more	holistically	with	a	vector	database.	The	choice	between	the	two	often	hinges	on	

specific	requirements	of	the	application,	the	volume	of	data,	and	the	need	for	dynamic	updates.

B E N E FITS O F VECTO R DATABAS ES I N A R AG WO R KFLOW

The	following	are	a	number	of	reasons	why	a	vector	database	may	be	preferable	over	a	vector	library	when	

implementing	a	RAG	workflow:

 Holistic data management:	Storing	both	vector	embeddings	and	original	data	objects	allows	a	RAG	

system	to	retrieve	relevant	context	without	needing	to	integrate	with	multiple	systems.

 Advanced filtering: Beyond	just	similarity	search,	vector	databases	allow	for	application	of	filters	on	

the	stored	data	objects.	This	ensures	more	precise	retrieval,	enabling	RAG	to	fetch	contextually	relevant	

and	specific	information	based	on	both	semantic	similarity	and	metadata	criteria.

 Dynamic updates: In	fast-evolving	domains,	the	ability	to	update	the	database	without	a	complete	

rebuild	of	the	vector	index	ensures	that	the	language	model	accesses	the	up-to-date	information.

 Scalability: Vector	databases	are	designed	to	handle	vast	amounts	of	data,	ensuring	that	as	data	grows,	

the	RAG	system	remains	efficient	and	responsive.

6 1BIG BOOK OF MLOPS - 2ND EDIT ION

https://https://en.wikipedia.org/wiki/Create,_read,_update_and_delete/google-research/google-research/tree/master/scann
https://www.trychroma.com/
https://milvus.io/

Fine-tuning LLMs
While	prompt	engineering	and	retrieval	augmented	generation	(RAG)	offer	robust	methods	to	guide	a	

model’s	behavior,	there	are	instances	where	they	might	not	be	adequate,	especially	for	entirely	novel	or	

domain-specific	tasks.	In	such	cases,	fine-tuning	a	LLM	can	be	advantageous.

Fine-tuning	is	the	process	of	adapting	a	pre-trained	LLM	on	a	comparatively	smaller	dataset	that	is	

specific	to	an	individual	domain	or	task.	During	the	fine-tuning	process,	only	a	small	number	of	weights	

are	updated,	allowing	it	to	learn	new	behaviors	and	specialize	in	certain	tasks.	

The	term	“fine-tuning”	can	refer	to	several	concepts,	with	the	two	most	common	forms	being:	

 Supervised instruction fine-tuning: This	approach	involves	continuing	training	of	a	pre-trained	LLM	

on	a	dataset	of	input-output	training	examples	-	typically	conducted	with	thousands	of	training	

examples.	Instruction	fine-tuning	is	effective	for	question-answering	applications,	enabling	the	model	

to	learn	new	specialized	tasks	such	as	information	retrieval	or	text	generation.	The	same	approach	

is	often	used	to	tune	a	model	for	a	single	specific	task	(e.g.	summarizing	medical	research	articles),	

where	the	desired	task	is	represented	as	an	instruction	in	the	training	examples.	

 Continued pre-training: This	fine-tuning	method	does	not	rely	on	input	and	output	examples	

but	instead	uses	domain-specific	unstructured	text	to	continue	the	same	pre-training	process	

(e.g.	next	token	prediction,	masked	language	modeling).	This	approach	is	effective	when	the	model	

needs	to	learn	new	vocabulary	or	a	language	it	has	not	encountered	before.

6 2BIG BOOK OF MLOPS - 2ND EDIT ION

https://huggingface.co/docs/transformers/main/tasks/language_modeling
https://huggingface.co/docs/transformers/main/tasks/masked_language_modeling

WH E N TO U S E FI N E-TU N I N G?

Choosing	to	fine-tune	an	open	source	LLM	offers	several	advantages	that	tailor	the	model’s	behavior	to	better	

fit	specific	organizational	needs.	The	following	are	a	number	of	motivations	behind	choosing	to	fine-tune:

 Customization and specialization:	LLMs	trained	on	large,	generic	datasets	-	such	as	those	provided	

by	third-party	APIs	-	often	have	broad	knowledge	but	lack	depth	in	niche	areas.	Fine-tuning	allows	

organizations	to	specialize	models	for	their	specific	domains	or	applications.

 Full control over model behavior: Fine-tuning	provides	granular	control	over	the	model’s	outputs.	

It	allows	organizations	to	address	specific	biases,	enforce	correctness	and	refine	a	model’s	behavior	

based	on	feedback.

FI N E-TU N I N G I N PR ACTI CE

Fine-tuning,	while	advantageous,	comes	with	practical	considerations.	Often,	the	optimal	approach	is	not	

solely	fine-tuning,	but	a	blend	of	fine-tuning	and	retrieval	methods	like	RAG.	For	example,	you	might	fine-tune	

a	model	to	generate	specific	outputs	but	also	use	RAG	to	inject	data	relevant	to	user	queries.	

Notably,	fine-tuning	large	models	with	billions	of	parameters	comes	with	its	own	set	of	challenges,	particularly	

in	terms	of	computational	resources.	To	accommodate	the	training	of	such	models,	modern	deep	learning	

libraries	like	PyTorch	FSDP	and	Deepspeed	employ	techniques	like	Zero	Redundancy	Optimizer	(ZeRO),	

Tensor	Parallelism,	and	Pipeline	Parallelism.	These	methods	optimize	the	distribution	of	the	model	training	

process	across	multiple	GPUs,	ensuring	efficient	use	of	resources.

A	resource-efficient	alternative	to	fine-tuning	all	parameters	of	a	LLM	is	a	class	of	methods	referred	to	as	

parameter-efficient	fine-tuning	(PEFT).	PEFT	methods,	such	as	LoRA	and	IA3	fine-tune	LLMs	by	adjusting	a	

limited	subset	of	model	parameters	or	a	small	number	of	extra-model	parameters.	These	approaches	not	

only	conserve	GPU	memory,	but	often	match	the	performance	of	full	model	fine-tuning.	Open	source	libraries	

such	as	Hugging	Face’s	PEFT	library	have	been	developed	to	easily	implement	this	family	of	fine-tuning	

techniques	for	a	subset	of	models.

6 3BIG BOOK OF MLOPS - 2ND EDIT ION

https://pytorch.org/docs/stable/fsdp.html
https://www.deepspeed.ai/
https://arxiv.org/abs/1910.02054
https://lilianweng.github.io/posts/2021-09-25-train-large/#tensor-parallelism
https://lilianweng.github.io/posts/2021-09-25-train-large/#pipeline-parallelism
https://arxiv.org/abs/1910.02054
https://huggingface.co/docs/peft/conceptual_guides/ia3
https://github.com/huggingface/peft#use-cases
https://github.com/huggingface/peft

Lastly,	it’s	worth	noting	the	significance	of	human	feedback	in	a	fine-tuning	context,	especially	for	

applications	like	question-answering	systems	or	chat	interfaces.	Such	feedback	helps	refine	the	model,	

ensuring	its	outputs	align	more	closely	with	user	needs	and	expectations.	To	facilitate	this	iterative	

process,	libraries	like	Hugging	Face’s	trl	or	CarperAI’s	trlX	can	be	used	to	apply	methods	like	Proximal	Policy	

Optimization	(PPO)	which	incorporate	human	feedback	into	the	fine-tuning	process.

Pre-training
Pre-training	a	model	from	scratch	refers	to	the	process	of	training	a	language	model	on	a	large	corpus	

of	data	(e.g.	text,	code)	without	using	any	prior	knowledge	or	weights	from	an	existing	model.	This	is	

in	contrast	to	fine-tuning,	where	an	already	pre-trained	model	is	further	adapted	to	a	specific	task	or	

dataset.	The	output	of	full	pre-training	is	a	base	model	that	can	be	directly	used	or	further	fine-tuned	for	

downstream	tasks.

WH E N TO U S E PR E-TR AI N I N G?

Choosing	to	pre-train	an	LLM	from	scratch	is	a	significant	commitment,	both	in	terms	of	data	and	

computational	resources.	Here	are	some	scenarios	where	it	makes	sense:

 1 Unique	data	sources:	If	you	possess	a	unique	and	extensive	corpus	of	data	that	is	distinct	from	

what	available	pre-trained	LLMs	have	seen,	it	might	be	worth	pre-training	a	model	to	capture	

this	uniqueness.

 2 Domain	specificity:	Organizations	might	want	a	base	model	tailored	to	their	specific	domain	(e.g.,	

medical,	legal,	code)	to	ensure	even	the	foundational	knowledge	of	the	model	is	domain-specific.

 3 Full	control	over	training	data:	Pre-training	from	scratch	offers	transparency	and	control	over	the	

data	the	model	is	trained	on.	This	may	be	essential	for	ensuring	data	security,	privacy,	and	custom	

tailoring	of	the	model’s	foundational	knowledge.

 4 Avoiding	third-party	biases:	Pre-training	ensures	that	your	LLM	application	does	not	inherit	biases	

or	limitations	from	third-party	pre-trained	models.

6 4BIG BOOK OF MLOPS - 2ND EDIT ION

https://github.com/huggingface/trl
https://github.com/CarperAI/trlx

PR E-TR AI N I N G I N PR ACTI CE

Given	the	resource-intensive	nature	of	pre-training,	careful	planning	and	sophisticated	tooling	are	required.	

Libraries	like	PyTorch	FSDP	and	Deepspeed,	mentioned	previously	in	the	fine-tuning	section,	are	similarly	

required	for	their	distributed	training	capabilities	when	pre-training	an	LLM	from	scratch.	The	following	only	

scratches	the	surface	on	some	of	the	considerations	one	must	take	into	account	when	pre-training	an	LLM:	

 Large scale data preprocessing: A	pre-trained	model	is	only	as	good	as	the	data	it	is	trained	on.	

Thus,	it	becomes	vitally	important	to	ensure	robust	data	preprocessing	is	conducted	prior	to	model	

training.	Given	the	scale	of	the	training	data	involved,	this	preprocessing	typically	requires	distributed	

frameworks	like	Apache	Spark.	Consideration	must	be	given	to	factors	such	as	dataset	mix	and	

deduplication	techniques	to	ensure	the	model	is	exposed	to	a	wide	variety	of	unique	data	points.

 Hyperparameter selection and tuning: Before	executing	full-scale	training	of	an	LLM,	determining	the	

set	of	optimal	hyperparameters	is	crucial.	Given	the	high	computational	cost	associated	with	LLM	

training,	extensive	hyperparameter	sweeps	are	not	always	feasible.	Instead,	informed	decisions	based	

on	smaller-scale	searches	or	prior	research	are	employed.	Once	a	promising	set	is	identified,	these	

hyperparameters	are	used	for	the	full	training	run.	Tooling	like	MLflow	is	essential	to	manage	and	track	

these	experiments.

 Maximizing resource utilization: Given	the	high	costs	associated	with	long-running	distributed	GPU	

training	jobs	it	is	hugely	important	to	maximize	resource	utilization.	MosaicML’s	composer	is	an	example	

of	a	library	that	uses	PyTorch	FSDP	with	additional	optimizations	to	maximize	Model	FLOPs	Utilization	

(MFU)	and	Hardware	FLOPs	Utilization	(HFU)	during	training.

 Handling GPU failures:	Training	large	models	can	run	for	days	or	even	weeks.	During	such	large	scale	

training	for	this	length	of	time,	hardware	failures,	especially	GPU	failures,	can	(and	typically	do)	occur.	

It	is	essential	to	have	mechanisms	in	place	to	handle	such	failures	gracefully.	

 Monitoring and evaluation: Close	monitoring	of	the	training	process	is	essential.	Saving	model	

checkpoints	regularly	and	evaluating	on	validation	sets	not	only	act	as	safeguards	but	also	provide	

insights	into	model	performance	and	convergence	trends.

6 5BIG BOOK OF MLOPS - 2ND EDIT ION

https://pytorch.org/docs/stable/fsdp.html
https://www.deepspeed.ai/
https://spark.apache.org/
https://mlflow.org/docs/latest/tracking.html
https://github.com/mosaicml/composer
https://pytorch.org/docs/stable/fsdp.html
https://github.com/mosaicml/llm-foundry/tree/main/scripts/train/benchmarking#mfu-and-hfu
https://github.com/mosaicml/llm-foundry/tree/main/scripts/train/benchmarking#mfu-and-hfu

In	cases	where	pre-training	an	LLM	from	scratch	is	required,	MosaicML	Training	provides	a	platform	

to	conduct	training	of	multi-billion	parameter	models	in	a	highly	optimized	and	automated	manner.	

Automatically	handling	GPU	failures	and	resuming	training	without	human	intervention,	and	MosaicML	

Streaming	for	efficient	streaming	of	data	into	the	training	process	are	just	some	of	the	capabilities	

provided	out-of-the-box.

Third-party APIs vs. self-hosted models
Choosing	between	third-party	LLM	APIs	and	self-hosting	your	own	models	has	implications	for	cost,	

control,	and	data	security.	Here	are	a	number	of	concerns	one	should	consider	when	making	that	decision:

 Data security and privacy:	Using	third-party	APIs	often	involves	sending	data	to	external	servers.	

This	can	pose	risks,	especially	when	dealing	with	sensitive	or	proprietary	information.	In	some	

cases	regulations	may	simply	prohibit	data	leaving	data	regions,	or	being	sent	to	non-compliant	

environments.	Hosting	your	own	model	ensures	that	data	does	not	leave	your	secure	environment,	

while	retaining	full	access	to	the	trained	model.

 Predictable and stable behavior: Proprietary	SaaS	models	can	undergo	updates	or	changes	

without	prior	notice.	Such	changes	can	lead	to	unpredictable	model	behavior.	When	hosting	your	own	

LLM,	you	have	full	control	over	its	versions	and	updates.

 Vendor lock-in:	Relying	on	third-party	APIs	means	being	dependent	on	the	vendor’s	terms,	

pricing,	and	availability.	With	this,	there	is	the	risk	of	the	service	being	deprecated	or	price	changes.	

By	self-hosting,	you	maintain	autonomy	and	guard	against	potential	vendor	lock-in.

6 6BIG BOOK OF MLOPS - 2ND EDIT ION

https://www.mosaicml.com/training
https://github.com/mosaicml/streaming
https://github.com/mosaicml/streaming

Model Evaluation
Evaluating	LLMs	is	a	challenging	and	evolving	domain,	primarily	because	LLMs	often	demonstrate	uneven	

capabilities	across	different	tasks.	An	LLM	might	excel	in	one	benchmark,	but	slight	variations	in	the	prompt	

or	problem	can	drastically	affect	its	performance.	The	dynamic	nature	of	LLMs	and	their	vast	potential	

applications	only	amplify	the	challenge	of	establishing	comprehensive	evaluation	standards.

The	following	are	a	number	of	present	challenges	involved	with	evaluating	LLM-powered	applications:

 Variable	performance:	LLMs	can	be	sensitive	to	prompt	variations,	demonstrating	high	proficiency	in	

one	task	but	faltering	with	slight	deviations	in	prompts.

 Lack	of	ground	truth:	Since	most	LLMs	output	natural	language,	it	is	very	difficult	to	evaluate	the	

outputs	via	traditional	NLP	metrics	(BLEU,	ROUGE,	etc.).	For	example,	suppose	an	LLM	were	used	to	

summarize	a	news	article.	Two	equally	good	summaries	might	have	almost	completely	different	words	

and	word	orders,	so	even	defining	a	“ground-truth”	label	becomes	difficult	or	impossible.

 Domain-specific	evaluation:	For	domain-specific	fine-tuned	LLMs,	popular	generic	benchmarks	

may	not	capture	their	nuanced	capabilities.	Such	models	are	tailored	for	specialized	tasks,	making	

traditional	metrics	less	relevant.	This	divergence	often	necessitates	the	development	of	domain-

specific	benchmarks	and	evaluation	criteria.	See	the	example	of	Replit’s	code	generation	LLM.

 Reliance	on	human	judgment:	It	is	often	the	case	that	LLM	performance	is	being	evaluated	in	domains	

where	text	is	scarce	or	there	is	a	reliance	on	subject	matter	expert	knowledge.	In	such	scenarios,	

evaluating	LLM	output	can	be	costly	and	time	consuming.

6 7BIG BOOK OF MLOPS - 2ND EDIT ION

https://youtu.be/BqhzreIwzGg?t=1050
https://huggingface.co/blog/evaluating-mmlu-leaderboard
https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/ROUGE_(metric)
https://blog.replit.com/llm-training

Some	prominent	benchmarks	used	to	evaluate	LLM	performance	include:

 BIG-bench	(Beyond	the	Imitation	Game	benchmark)

A	dynamic	benchmarking	framework,	currently	hosting	over	200	tasks,	with	a	focus	on	adapting	to	

future	LLM	capabilities.

 EluetherAI	LM	Evaluation	Harness

A	holistic	framework	that	assesses	models	on	over	200	tasks,	merging	evaluations	like	BIG-bench	

and	MMLU,	promoting	reproducibility	and	comparability.

 	Mosaic	Model	Gauntlet

An	aggregated	evaluation	approach,	categorizing	model	competency	into	six	broad	domains	(shown	

below)	rather	than	distilling	to	a	single	monolithic	metric.	

Source:	Mosaic	Model	Gauntlet

6 8BIG BOOK OF MLOPS - 2ND EDIT ION

https://arxiv.org/abs/2206.04615
https://github.com/EleutherAI/lm-evaluation-harness
https://arxiv.org/abs/2009.03300
https://www.mosaicml.com/llm-evaluation
https://www.mosaicml.com/llm-evaluation

LLM S AS E VALUATO RS

A	number	of	alternative	approaches	have	been	proposed	to	use	LLMs	themselves	to	assist	with	model	

evaluation.	These	range	from	using	LLMs	to	generate	evaluations,	through	to	entrusting	LLMs	as	judges	to	

evaluate	other	models	capabilities	or	outputs.	Ideally,	when	evaluating	an	LLM,	a	larger	or	more	capable	

LLM	should	be	employed	as	the	evaluator.	This	premise	is	based	on	the	understanding	that	a	“smarter”	

model	can	plausibly	produce	a	more	accurate	evaluation.	The	benefits	of	using	LLMs	as	evaluators	include:

 Speed,	as	they	are	faster	than	human	evaluators

 Cost-effectiveness

I n	certain	cases,	they	offer	comparable	accuracy	to	human	evaluators

See	the	following	Databricks	blog	post	for	a	more	detailed	exploration	on	using	LLMs	as	evaluators.

H U MAN FE E D BACK I N E VALUATI O N

While	human	feedback	is	important	in	many	traditional	ML	applications,	it	becomes	much	more	important	

for	LLMs.	Humans	-	ideally	your	end	users	-	become	essential	for	validating	LLM	output.	While	you	can	pay	

human	labelers	to	compare	or	rate	model	outputs	(or	have	an	LLM	evaluate	your	application	as	mentioned	

above),	the	best	practice	for	user-facing	applications	is	to	build	human	feedback	into	the	applications	from	

the	outset.	For	example,	a	tech	support	chatbot	may	have	a	“click	here	to	chat	with	a	human”	option,	which	

provides	implicit	feedback	indicating	whether	the	chatbot’s	responses	were	helpful.	Explicit	feedback	can	

also	be	captured	in	this	case	by	presenting	users	with	the	ability	to	click	thumbs	up/down	buttons.

6 9BIG BOOK OF MLOPS - 2ND EDIT ION

https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/2306.05685
https://www.databricks.com/blog/LLM-auto-eval-best-practices-RAG

Packaging models or pipelines for deployment
In	traditional	ML,	there	are	generally	two	types	of	ML	logic	to	package	for	deployment:	models	and	

pipelines.	These	artifacts	are	generally	managed	toward	production	via	a	model	registry	and	Git	version	

control,	respectively.

With	LLMs,	it	is	common	to	package	ML	logic	in	new	forms.	These	may	include:

 A	lightweight	call	to	an	LLM	API	service	(third-party	or	internal)

 A	“chain”	from	LangChain	or	an	analogous	pipeline	from	another	tool.	The	chain	may	call	an	LLM	API	or	a	

local	LLM	model.

 An	LLM	or	an	LLM+tokenizer	pipeline,	such	as	a	Hugging	Face	pipeline.	This	pipeline	may	use	a	pretrained	

model	or	a	custom	fine-tuned	model.

 An	engineered	prompt,	possibly	stored	as	a	template	in	a	tool	such	as	LangChain.

Though	LLMs	add	new	terminology	and	tools	for	composing	ML	logic,	all	of	the	above	still	constitute	models	

and	pipelines.	Thus,	the	same	tooling	such	as	MLflow	can	be	used	to	package	LLMs	and	LLM	pipelines	for	

deployment.	Built-in	model	flavors	include:

 PyTorch	and	TensorFlow

 Hugging	Face	Transformers	(relatedly,	see	Hugging	Face	Transformers’	MLflowCallback)

 LangChain

 OpenAI	API

 (See	the	documentation	for	a	complete	list)

For	other	LLM	pipelines,	MLflow	can	package	the	pipelines	via	the	MLflow	pyfunc	flavor,	which	can	store	

arbitrary	Python	code.

Note about prompt versioning

Just as it is helpful to track model versions, it is helpful

to track prompt versions (and LLM pipeline versions,

more generally). Packaging prompts and pipelines as

MLflow models simplifies versioning. Just as a newly

retrained model can be tracked as a new model version

in the MLflow model Registry, a newly updated prompt

can be tracked as a new model version.

Note about deploying models vs. code

Your decisions around packaging ML logic as version-

controlled code vs. registered models will help to

inform your decision about choosing between the

deploy models, deploy code, and hybrid architectures.

Review the subsection below about human feedback,

and make sure that you have a well-defined testing

process for whatever artifacts you choose to deploy.

7 0BIG BOOK OF MLOPS - 2ND EDIT ION

https://huggingface.co/
https://mlflow.org/
https://mlflow.org/docs/latest/models.html
https://huggingface.co/docs/transformers/en/main_classes/callback#transformers.integrations.MLflowCallback
https://mlflow.org/docs/latest/models.html
https://mlflow.org/docs/latest/models.html#python-function-python-function

LLM Inference
Inference	for	LLM-powered	solutions	can	come	in	a	number	of	forms.	In	this	section	we	focus	on	two	

primary	methods	for	LLM	inference:	real-time	and	batch.

R E AL-TI M E I N FE R E N CE

Real-time	inference	is	ideal	for	applications	requiring	immediate	responses,	such	as	chat	interfaces	or	

question-answering	systems.	Real-time	LLM	inference	can	be	further	bucketed	into	the	following:

 Third-party LLM API with pre- and post- processing logic:

•		Some	inference	pipelines,	like	RAG	workflows,	include	pre-processing	and	post-processing	

logic,	and	use	an	external	LLM	API	to	generate	output.	Such	pipelines	can	be	deployed	as	REST	

API	endpoints	using	services	like	Databricks	Model	Serving.	For	deployed	LLM	pipelines	making	

requests	to	external	APIs,	CPU	instance	types	are	sufficient.

•		To	standardize	interactions	with	SaaS	and	OSS	LLMs	for	such	LLM	pipelines,	the	MLflow	AI	

Gateway	can	be	used	to	manage	requests	to	different	LLM	API	providers.	It	offers	a	high-level	

interface	that	simplifies	the	interaction	with	these	services	by	providing	a	unified	endpoint	to	

handle	specific	LLM	related	requests.

 Pre-trained or fine-tuned OSS LLMs:

•		When	hosting	your	own	LLMs,	such	as	those	downloaded	from	repositories	like	Hugging	Face	

(and	additionally	fine-tuned),	GPU	instance	types	are	typically	required	for	optimized	inference.

BATCH I N FE R E N CE

Batch	inference	is	well-suited	for	scenarios	where	immediate	feedback	is	not	critical	(e.g.	offline	text	

summarization).	For	batch	use	cases,	Spark	can	be	leveraged	to	distribute	inference	across	multiple	

machines	(GPUs	included).	

7 1BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/index.html#model-serving-with-databricks
https://mlflow.org/docs/latest/gateway/index.html
https://mlflow.org/docs/latest/gateway/index.html
https://docs.databricks.com/en/machine-learning/train-model/huggingface/model-inference-nlp.html
https://docs.databricks.com/en/machine-learning/train-model/huggingface/model-inference-nlp.html

I N FE R E N CE WITH L ARG E M O D E LS

Applicable	to	both	real-time	and	batch	inference	scenarios	is	handling	cases	where	large	models	exceed	

the	memory	of	a	single	GPU.	In	such	cases:

 Distribute	serving	across	multiple	GPUs,	and/or;

 Consider	loading	the	model	with	reduced	precision,	such	as	8-bit	or	4-bit	quantization,	to	fit	within	

memory	constraints.	Be	aware	that	this	option	may	affect	the	quality	of	the	model’s	outputs.

Managing cost/performance trade-offs
One	of	the	big	Ops	topics	for	LLMs	is	managing	cost/performance	trade-offs,	especially	for	inference	

and	serving.	With	“small”	LLMs	having	hundreds	of	millions	of	parameters	and	large	LLMs	having	hundreds	

of	billions	of	parameters,	computation	can	become	a	major	expense.	Thankfully,	there	are	many	ways	to	

manage	and	reduce	costs	when	needed.	We	will	review	some	key	tips	for	balancing	productivity	and	costs.

 1 Start simple, but plan for scaling: When	developing	a	new	LLM-powered	application,	speed	of	

development	is	key,	so	it	is	acceptable	to	use	more	expensive	options,	such	as	paid	APIs	for	existing	

models.	As	you	go,	make	sure	to	collect	data	such	as	queries	and	responses.	If	the	API	provider	

terms	of	service	permits	it,	you	may	be	able	to	use	this	data	to	fine-tune	a	smaller,	cheaper	model	

which	you	can	own.

 2 Scope out your costs: How	many	queries	per	second	do	you	expect?	Will	requests	come	in	bursts?	

How	much	does	each	query	cost?	These	estimates	will	inform	you	about	project	feasibility	and	will	

help	you	to	decide	when	to	consider	bringing	the	model	in-house	with	open	source	models	and	

fine-tuning.

 3 Reduce costs by tweaking LLMs and queries: There	are	many	LLM-specific	techniques	for	reducing	

computation	and	costs.	These	include	shortening	queries,	tweaking	inference	configurations,	and	

using	smaller	versions	of	models.

 4 Get human feedback:	It	is	easy	to	reduce	costs	but	hard	to	say	how	changes	impact	your	results	

unless	you	get	human	feedback	from	end	users.

7 2BIG BOOK OF MLOPS - 2ND EDIT ION

https://huggingface.co/blog/4bit-transformers-bitsandbytes

METHODS FOR REDUCING COSTS OF INFERENCE

U S E A S MALLE R M O D E L

 Pick	a	different	existing	model.	Try	smaller	versions	of	models	(such	as	“llama-2-13b”	

instead	of	“llama-2-70b”)	or	alternate	architectures.

 Fine-tune	a	custom	model.	With	the	right	training	data,	a	fine-tuned	small	model	can	

often	perform	as	well	or	better	than	a	large	generic	model.

 Use	model	distillation	(or	knowledge	distillation).	This	technique	“distills”	the	knowledge	of	

the	original	model	into	a	smaller	model.

 Reduce	floating	point	precision	(quantization).	Models	can	sometimes	use	lower	precision	

arithmetic	without	losing	much	in	quality.

R E D U CE CO M PUTATI O N FO R A G IVE N M O D E L .

 Shorten	queries	and	responses.	Computation	scales	with	input	and	output	sizes,	reducing	costs	

by	using	more	concise	queries	and	responses.

 Tweak	inference	configurations.	Some	types	of	inference,	such	as	beam	search,	require	more	

computation.

OTH E R

 Split	traffic.	If	your	return	on	investment	(ROI)	for	an	LLM	query	is	low,	then	consider	splitting	

traffic	so	that	simpler,	faster	models	or	methods	handle	low	ROI	queries.	Save	LLM	queries	for	

high	ROI	traffic.

 Use	pruning	techniques.	If	you	are	training	your	own	LLMs,	there	are	pruning	techniques	that	

allow	models	to	use	sparse	computation	during	inference.	This	reduces	computation	for	most	or	

all	queries.

7 3BIG BOOK OF MLOPS - 2ND EDIT ION

https://en.wikipedia.org/wiki/Knowledge_distillation
https://huggingface.co/blog/hf-bitsandbytes-integration#introduction-to-model-quantization
https://lilianweng.github.io/posts/2023-01-10-inference-optimization/#pruning

Reference architecture
To	illustrate	potential	adjustments	to	your	reference	architecture	from	traditional	MLOps,	we	provide	a	modified	

version	of	the	previous	production	architecture	for	two	separate	LLM-based	applications:	

 1 RAG	workflow	using	a	third-party	API

 2 RAG	workflow	using	a	self-hosted	fine-tuned	model.	

Note	that	in	either	of	these	examples,	the	retrieval	element	using	the	vector	database	could	be	removed,	and	

the	LLM	queried	directly	through	the	Model	Serving	endpoint.

RAG with a third-party LLM API

7 4BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/index.html

RAG with a fine-tuned OSS model

7 5BIG BOOK OF MLOPS - 2ND EDIT ION

The	primary	changes	to	the	above	production	architectures	are:

Model Hub
Since	LLM	applications	often	make	use	of	existing,	pretrained	models,	an	internal	or	external	model	hub	

becomes	a	valuable	part	of	the	infrastructure.	In	the	RAG	with	fine-tuned	model	example	we	illustrate	using	

an	existing	base	model	from	the	model	hub	that	is	then	fine-tuned	in	production.	

Vector Database
Some	(but	not	all)	LLM	applications	use	vector	databases	for	fast	similarity	searches,	most	often	to	provide	

context	or	domain	knowledge	in	LLM	queries.	To	ensure	that	the	deployed	language	model	has	access	to	

up-to-date	information,	regular	vector	database	updates	can	be	scheduled	as	a	Databricks	job.	Note	that	

the	logic	to	retrieve	from	the	vector	database	and	inject	information	into	the	LLM	context	can	be	packaged	

in	the	model	artifact	logged	to	MLflow	using	MLflow	LangChain	or	PyFunc	model	flavors.

 MLflow AI Gateway
In	LLM-based	applications	where	a	third-party	LLM	API	is	used,	the	MLflow	AI	Gateway	can	be	used	as	

a	standardized	interface	to	route	requests	from	vendors	such	as	OpenAI	and	Anthropic.	In	addition	to	

providing	an	enterprise-grade	API	gateway,	the	AI	Gateway	centralizes	API	key	management	and	provides	

the	ability	to	enforce	cost	controls.

7 6BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/workflows/jobs/schedule-jobs.html#run-jobs-on-a-schedule-or-continuously
https://mlflow.org/docs/latest/models.html#langchain-langchain-experimental
https://mlflow.org/docs/latest/models.html#python-function-python-function
https://mlflow.org/docs/latest/gateway/index.html

Fine-tune LLM
Instead	of	a	de	novo	model	training	pipeline,	LLM	applications	will	generally	fine-tune	an	existing	model	

(or	use	an	existing	model	without	any	tuning).	Fine-tuning	is	a	lighter-weight	process	than	training,	but	it	

is	similar	operationally.	We	represent	model	fine-tuning	and	model	deployment	as	separate	Databricks	

Workflows	given	that	validating	a	fine-tuned	model	prior	to	deployment	may	be	a	manual	process	involving	

a	human-in-the-loop.

Model Serving
In	the	case	of	RAG	using	a	third-party	API,	one	key	architectural	change	is	that	the	LLM	pipeline	will	make	

external	API	calls,	from	the	Model	Serving	endpoint	to	internal	or	third-party	LLM	APIs.	It	should	be	noted	

that	this	adds	complexity,	potential	latency,	and	another	layer	of	credential	management.	By	contrast,	in	

the	fine-tuned	model	example,	the	model	and	its	model	environment	will	be	deployed.

Human feedback in monitoring and evaluation
Human	feedback	loops	may	be	used	in	traditional	ML	but	become	essential	in	most	LLM	applications.	

Human	feedback	should	be	managed	like	other	data,	ideally	incorporated	into	monitoring	based	on	near	

real-time	streaming.

7 7BIG BOOK OF MLOPS - 2ND EDIT ION

https://docs.databricks.com/en/machine-learning/model-serving/index.html

CHAPTER 7

Conclusion In	an	era	defined	by	data-driven	decision	making	and	intelligent	automation,	the	importance	of	MLOps	

cannot	be	overstated.	MLOps	provides	the	essential	scaffolding	for	developing,	deploying,	and	maintaining	

AI	models	at	scale,	ensuring	they	remain	accurate	and	continue	to	deliver	business	value.	The	emergence	

of	LLMOps	highlights	the	rapid	advancement	and	specialized	needs	of	the	field	of	Generative	AI.	However,	

at	its	heart,	LLMOps	is	still	rooted	in	the	foundational	principles	of	MLOps.

Whether	you	are	implementing	traditional	machine	learning	solutions	or	LLM-driven	applications,	the	four	

core	tenets	remain	constant:	

 Business goal: Always	keep	your	business	goals	in	mind

 Data-centric: Prioritize	a	data-centric	approach

 Modular: Implement	solutions	in	a	modular	manner

 Automated: Aim	for	processes	to	guide	automation

Databricks	stands	uniquely	positioned	as	a	unified,	data-centric	platform	for	both	MLOps	and	LLMOps.	

Serving	as	the	foundation,	Unity	Catalog	provides	a	single	governance	solution	for	all	data	and	AI	assets.	

This	is	complemented	by	MLflow	for	experiment	tracking,	Model	Serving	for	real-time	deployment,	

Lakehouse	Monitoring	to	ensure	long	term	efficiency	and	performance	stability,	and	Databricks	Workflows	

to	seamlessly	orchestrate	data	pipelines.

As	we	look	forward	to	the	oncoming	wave	of	AI	advancements,	it’s	clear	that	employing	a	robust	

MLOps	strategy	will	remain	central	to	unlocking	AI’s	full	potential.	With	firm	MLOps	foundations	in	place,	

organizations	will	be	able	to	maximize	their	AI	investments	to	drive	innovation	and	deliver	business	value.

7 8BIG BOOK OF MLOPS - 2ND EDIT ION

